
3854 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 5, MAY 2024
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Abstract— Trajectory prediction is a fundamental problem and
challenge for autonomous vehicles. Early works mainly focused
on designing complicated architectures for deep-learning-based
prediction models in normal-illumination environments, which
fail in dealing with low-light conditions. The paper proposes
a novel approach for trajectory prediction in low-illumination
scenarios by leveraging multi-stream information fusion, which
integrates image, optical flow, and object trajectory information.
This is achieved by applying Convolutional Neural Network-
based (CNN) Long Short-term Memory (LSTM) networks to
extract temporal information from the image channel, Spatial-
Temporal Graph Convolutional Network (ST-GCN) to model rel-
ative motion between adjacent camera frames through the optical
flow channel, and recognizing high-level interactions between
vehicles in the trajectory channel. Further, to investigate the
reliability of the model in low-illumination scenarios, epistemic
uncertainty estimation is conducted by applying Monte Carlo
Dropout. The proposed approach is validated on HEV-I and
newly generated Dark-HEV-I datasets focusing on graph-based
interaction understanding and low illumination conditions. The
experimental results show improved performance compared to
baselines in both standard and low-illumination scenarios. Impor-
tantly, our approach is generic and applicable to scenarios with
different types of perception data. The source code is available
at https://github.com/TommyGong08/MSIF.

Index Terms— Autonomous driving, trajectory prediction, low
illumination scenarios, information fusion, graph convolutional
network.

I. INTRODUCTION

WITH the rapid development of autonomous driving,
it has become apparent that ensuring the safety of
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autonomous systems in traffic scenarios is necessary for the
widespread adoption of autonomous driving [1]. For self-
driving cars to have driving capabilities comparable to those
of human drivers, it is essential to understand the state of
surrounding vehicles and predict their trajectories [2].

A. Motivation

Trajectory prediction in autonomous driving has been the
focus of numerous studies in recent years, with researchers
primarily investigating scenarios in normal-illumination envi-
ronments using standard light conditions. However, these state-
of-the-art approaches have proven inadequate for low-light
conditions, rendering them unsuitable for nighttime use [3]. In
low illumination scenarios, autonomous driving systems face
a slew of challenges. First and foremost, limited perception
capability is a significant concern, as the illumination level
directly affects sensor performance. The ability to detect
and recognize obstacles is also compromised in low-light
conditions, as is the visibility of road conditions, which may be
obscured by shadows or other factors. Furthermore, changes
in illumination levels can have a significant impact on the
accuracy of trajectory predictions. According to the National
Highway Traffic Safety Administration’s survey [4], fatal
traffic accidents at night account for 51% of all such incidents
in the United States, particularly in rural areas with extremely
low illumination. As a result, accurate trajectory prediction
in low-illumination scenarios is critical for traffic safety and
reducing the number of fatalities and injuries resulting from
nighttime accidents. To achieve this goal, advanced algorithms
must be developed that can effectively operate in low-light
conditions while accounting for the various challenges posed
by such environments.

B. Related Works

Numerous types of research have proposed various methods
for predicting trajectories. Physics-based methods employ the
dynamics or kinematics models of vehicles [5]. In most cases,
a simple physics model is preferred because complex physics
models provide only marginal improvements in predictive
accuracy. Kalman filtering is popularly applied in physics-
based methods. Reference [6] models the noise of the current
state of vehicles using Kalman filtering techniques. Based on
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the Gaussian Mixture Model(GMM), [7] predicts the looka-
head distance for autonomous vehicles and [8] successfully
recognizes the braking intensity levels of drivers. Combin-
ing vehicle-to-vehicle (V2V) communication and the Kalman
filter, [9] predicts ego-vehicle trajectories to avoid obstacles.
However, the accuracy of physics-based methods is heavily
dependent on the description of physics models. If dynamic
models of vehicles change, physics-based methods can only
provide short-term predictions.

Recently, the most popular methods for predicting trajec-
tories are based on deep learning, as they can effectively
integrate physical constraints, interactions, and scene under-
standing [5]. To solve the problem of insufficient data and
improve modeling efficiency, transfer learning is used in
driver behavior modeling [10], especially in the lane-changing
scenario [11], [12], [13], [14]. Reference [15] extracts features
of spatial interactions with attention mechanism and employs
the LSTM network to determine their temporal dependence.
Reference [16] presents a social generative adversarial network
(GAN) model that focuses on the normalization and rational-
ity of trajectories. Reference [17] introduces Graph Parsing
Neural Network (GPNN) to learn human-object interactions in
videos and images. To effectively capture the social behaviors
of relevant pedestrians, a graph neural network is implemented
in social behavior modeling and trajectory prediction based
on their timely location and speed direction [18], [19]. Graph
neural network employs graphs to represent traffic scenarios
in which nodes represent vehicles and edges represent the
degree of interaction between vehicles [20], [21], [22], [23].
For capturing the spatial and temporal information during the
interaction, [21] constructs the spatial-temporal graph model,
in which the temporal graph extracts personal information and
the spatial graph extracts pedestrian interaction information.
To encode short-term data in autonomous driving scenarios,
GMPNet [24] considers the grouped points as a node and
uses a k-NN graph to make graph embedding. Reference
[25] preserves the spatial information through fully connected
GNNs and also effectively captures the relationship between
two images via Attentive Graph Neural Networks (AGNN).
The Social-STGCNN model proposed by [23] employs a graph
convolutional neural network to embed the spatial-temporal
graph and a time extrapolator to determine trajectories.

However, the physic model-based and deep learning-based
trajectory prediction methods mainly focus on normal driving
conditions. As illumination conditions change throughout the
day, it is necessary for self-driving vehicles to make image
enhancement and extract scene features in low-brightness
environments [3]. Reference [26] develops a fusion-based
enhancing method for weakly illuminated images. Reference
[27] proposes a dataset with low-light images, finding that
the effects of low-light reach far deeper into the features than
can be solved by simple “illumination invariance”. Reference
[3] develops an image enhancement approach for autonomous
driving at night. Optical flow information is introduced to
ensure the consistency of transformed brightness or to realize
optical flow tracking in response to the difficulty posed by
low-illumination conditions. Reference [28] uses optical flow
to improve image quality in low-light conditions. Utilizing

dense optical flow, [29] encodes motion between consecu-
tive frames and achieves visual emotion recognition in low
resolution and poor illumination. Reference [30] integrates
optical flow and LiDAR perception data for moving object
detection in autonomous driving under low-light conditions.
The above works have investigated image enhancement and
object detection in low-light conditions of autonomous driving,
but little research has explored trajectory prediction in the low-
illumination environment.

A series of trajectory prediction approaches, such as
physics-based, deep learning methods, have achieved state-
of-the-art performance for normal driving conditions, but for
complex autonomous driving traffic scenarios, environmental
conditions are not constant. Autonomous vehicles can be
exposed to extreme conditions such as low and strong lights.
Moreover, some research work related to computer vision on
low-light conditions seldom pays attention to the trajectory
prediction problem [28], [29], [30], making it difficult to solve
the trajectory prediction problem for extreme conditions.

C. Contributions

To overcome the detrimental effects of low-light conditions
on autonomous driving, especially in the trajectory problem,
this research proposes a multi-stream information (hetero-
geneous data) fusion-based method, MSIF, for trajectory
prediction in low-illumination scenarios. The proposed method
combines trajectories, optical flow, and image information,
which ensures adaptability to various luminance levels and
especially overcomes low-illumination conditions. To model
the interaction in low-brightness conditions for trajectory
prediction, the graph convolutional neural network (GCN) is
applied to represent spatial-temporal features of trajectories
[23] and the instantaneous speed of surrounding vehicles
(from optical flow). Meanwhile, local spatial differences are
identified using a novel recurrent-based image feature extrac-
tion technique [31]. To simulate realistic low-light driving
conditions, the Dark-HEV-I dataset is derived from the HEV-I
dataset by adjusting the image brightness. The main contribu-
tions of this paper are summarized as follows:

1) : A novel trajectory prediction method is proposed
for low-illumination conditions by leveraging multi-stream
information fusion, which flexibly integrates image, opti-
cal flow, and object trajectory information. The proposed
method designs the ST-GCN-based method for temporal
and spatial information representation and incorporates a
novel multi-stream information fusion mechanism into its
architecture.

2) : To simulate low-illumination driving conditions and
evaluate the effectiveness of the proposed method, the Dark-
HEV-I dataset is derived from the HEV-I dataset with the same
scale. In Dark-HEV-I dataset, the low-illumination images are
generated by adjusting the exposure of the original images, and
optical flow is produced by using the low-illuminated images.
Experimental results demonstrate that the proposed method
could maintain high performance in the Dark-HEV-I dataset.

3) : To address the inherent challenges encountered in
extreme conditions, such as low illumination scenarios, this
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Fig. 1. The model consists of three channels: optical flow, image, and trajectory (from top left to top right). The output of this model is the distribution
of predicted trajectories. The proposed approach implements CNN and LSTM layers for feature extraction and scene understanding for image information.
A spatial-temporal graph convolutional neural network is used for feature extraction for optical flow and trajectory information. All the extracted features will
be concatenated and transferred into the trajectory prediction module. Considering the weight and efficiency of the model, a convolution neural network is
adopted in the future trajectories prediction module.

study also focuses on the estimation of epistemic uncertainty.
In this pursuit, we employ the technique of sample-based
Monte Carlo dropout to approximate the complex and elusive
distribution. besides, an epistemic uncertainty score is defined,
which serves to partially alleviate the issue of limited inter-
pretability commonly associated with deep learning models.

D. Outline

This paper is organized as follows. In section II-A, the for-
mulation of the multi-stream trajectory prediction is detailed.
Section II begins with a description of the proposed method,
followed by the formulation of graph representation, image
feature extraction, and information fusion. Section III shows
the HEV-I dataset, the newly generated Dark-HEV-I dataset,
implementation details and experimental results. Finally, the
conclusion is presented in Section IV.

II. METHODOLOGY

This section begins with the formulation of the trajec-
tory prediction problem, including model inputs, outputs,

data flow, and structural characteristics, as shown in Fig. 1.
Then, the principle and functions of the three channels in
the proposed model are described: the optical flow channel,
the trajectory channel, and the image channel. Finally, the
last subsection introduces the trajectory prediction module,
specifically describing information fusion methods.

A. Problem Formulation

As shown in Fig. 1, a novel method involving an image
channel, optical flow channel, trajectory channel, and the
fusion module of trajectory prediction is proposed to predict
trajectories of moving objects in the field of view. This
study assumes that an autonomous driving vehicle can obtain
heterogeneous data from its sensors. At each time step, at least
the front-view image is provided. The speed and direction
of objects in motion are not provided. As front-view camera
images are commonly used in autonomous vehicles, this
study assumes that the optical flow can be generated from
the original images. Historical trajectories of objects in the
scenario are obtained through object detection and trajectory
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tracking. Specifically, the model’s input at time t is defined as
follows:

St = {I t , O t , X t } (1)
I t = [M t−tobs , . . . , M t−1, M t ] (2)

where I t represents the image sequence captured by the
front-view camera on the automatic vehicle. O t and X t denote
the optical flow sequence and the sequence of the set formed
by objects’ trajectories in each frame, respectively, where

O t = [J t−tobs , . . . , J t−1, J t ] (3)
X t = [P t−tobs , . . . , P t−1, P t ] (4)

where P t is the set of the objects’ trajectories at time t , P t =

{(x i
t , yi

t ) | i = 0, 1, . . . , n}, where n is a variable parameter
due to the change of the number of the objects in the view at
different times.

Furthermore, the trajectory and optical flow information
will be represented by graphs, in which each node stands
for a vehicle. At each time step t , the information of each
M t is abstracted into a graph G t = (Vt , At ), in which V =
{vi
| ∀i ∈ 1, 2, . . . , N }. N is the total number of objects that

appear in that sequence. Vt represents the node, and attributes
of vi are the coordinate of each object in pixel coordinates,
denoted as vi = (xi , yi ). At represents the adjacency matrix
and At = {a

i, j
t | ∀i, j ∈ 1, 2, . . . , N }. For the same sequence,

At weights vertices’ contributions to each in the convolution
operation. Thus, a kernel function can be considered as prior
knowledge about the interactive degree between vehicles as it
maps attributes at vi and v j at time step t to the value ai, j

t . As
marked in Fig. 2, the spatial feature forwarded from node i
to node j at time step t is denoted as hi, j

t , used in graph
convolution. During the graph convolution, spatial features
will be taken part in the operation. Given the same definitions
of the sampling function and weight function in [21], the graph
spatial convolution is formulated as:

fout (vti ) =
∑

vt j∈B(vti )

1
Z ti (vt j )

fin(vt j ) ·W(lti (vt j )) (5)

where B(vti ) represents the neighbor set of vti , and Z ti (vt j )

is the normalizing term.
Predicted trajectories are assumed to follow the bi-variate

Gaussian distribution, which is estimated to �(µ̂, σ̂ , and ρ̂).
The output of the model at time t is defined as
Rt = [P t+1, P t+2, . . . , P t+tpred ]. Defining parameters of the
i-th object’s bi-variate Gaussian distribution at the moment t
as µi

t ,σ
i
t , ρi

t , the output can be formulated as:

9(Ri
t | St ) ∼ �(µ̂i

t , σ̂
i
t , ρ̂

i
t ), i = 1, 2, . . . , n (6)

The ground truth of predicted trajectories is denoted as
Yt+1:t+tpred . The goal of the proposed approach is to precisely
map observations to predictions, which can be formulated as:

arg min
f ∈F

L(Yt+1:t+tpred , f (St )) (7)

where F is the model set in the training process, f represents
the model, and L is the measure of prediction error. The
proposed method considers the Negatively Log-Likelihood

Fig. 2. This figure presents the detailed process of the Trajectory channel,
which provides graph embedding. The spatial feature forward from node i to
node j at time step t is denoted as hi, j

t used in graph convolution. During the
graph convolution, the spatial features will be taken part in the operation. The
trajectory change finally outputs the trajectory features which will be fused
in TPM as shown in Fig.1.

Loss-based (NLL) function. Regarding the predicted bi-variate
gaussian distribution trajectory, the loss function is computed
by the following formula:

L =
1

2πσXσY
√

1− ρ2
exp(−

1
2(1− ρ2)

[
(x − µX )2

ρ2
X

+
(y − µY )2

ρ2
Y

−
2ρ(x − µX )(y − µY )

ρXρY
])

(8)

where µX , µY , σX , σY , ρ are the components of the bi-variate
gaussian distribution, and the x, y represent the ground truth
of the trajectory points.

B. Multi-Stream Information Fusion Framework

The low illumination environment poses the challenge for
trajectory prediction, which threatens the safety of autonomous
vehicles. Due to the insufficient light and inadequate under-
standing of the scenario, it is inconsiderate to merely use tra-
jectory information for prediction. For trajectory prediction in
the low illumination scenarios, it is intuitive that the prediction
method should make an image enhancement and capture the
information about vehicles in motion. Therefore, our approach
innovatively utilizes optical flow and image information for
trajectory prediction besides trajectory information.

As shown in Fig. 1, the MSIF method combines front-view
image streams, optical flow, and trajectories from object detec-
tion using three input channels: 1) Optical channel, 2) Image
channel, and 3) Trajectory channel. The model’s inputs consist
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Fig. 3. The subfigure (a) shows the working principle of LSTM layer,
the subfigure (b) shows the working the principle of LSTM cell. LSTM is
a network with a long-term memory function consisting of forgetting gate,
input data, and output date, as shown in Fig.3(b).

of the pixel matrices of the image stream, the optical flow, and
the trajectories, where the image stream is the original data,
and the optical flow and trajectories are generated from the
image stream.

For the image channel, after obtaining the images of the
front-view camera, the approach first resizes the images. It
implements the Convolutional Neural Network (CNN) and
Long Short-Term Memory (LSTM) layers to extract the fea-
tures of the resized image. Several optical flow generation
techniques, such as [32] and [33], have been developed
for the optical flow channel. Flownet 2.0 generates optical
flow in this framework [32]. Then, the optical flow channel
distinguishes moving objects from background and enhances
the image channel by leveraging a spatial-temporal graph
convolutional neural network. For the trajectory channel, the
target detection algorithm takes original images as inputs and
generates trajectories of the geometric center of the bounding
boxes. Trajectories are served as inputs of a spatial-temporal
graph convolutional neural network for interactive behavior
modeling in the trajectory channel. Finally, the trajectory
prediction module accepts extracted features from the three
channels mentioned above, where the features are fused and
used to generate predicted trajectories. Considering the weight
and efficiency of the model, a convolution neural network is
utilized in the future trajectory prediction module.

The output of this model is the bivariate Gaussian distribu-
tion of the predicted trajectories. It must be emphasized that all
trajectory coordinates in this paper are in the pixel coordinate
system.

C. Graph Representation

This subsection describes the reason and process for the
graph representation of the optical flow and trajectories.

As stated in the previous section, the model for predicting
trajectories based on a single trajectory cannot solve the ran-
domness and mutability of trajectories. To accurately predict
multivariate trajectories, it is necessary to consider incorporat-
ing additional heterogeneous data into models of interaction
behavior. Considering that no matter what scenario the vehicle
is in, it is more concerned with moving objects. Thus the
proposed method introduces data that can reflect the velocity
of object motion - optical flow. The approach combines two
types of heterogeneous data, optical flow, and trajectory, which
respond to partial information, to model the interactive behav-
ior accurately. In addition, previous research has demonstrated
that spatial-temporal graph convolutional networks (ST-GCN)
can effectively model social behaviors; therefore, this approach
employs ST-GCN for graph embedding of optical flow and tra-
jectories. The upper left part of Fig. 1 depicts the optical flow
generation process. Previous researchers have invented various
algorithms for optical flow generation [33], [34]. The paper
[35] presents a novel two-frame motion estimation algorithm
based on polynomial expansion transform. Reference [36]
uses optical flow to represent motion and predicts dynamic
visual salience by combining spatial and temporal features.
To obtain precise motion estimation, the optical flow channel
implements the architecture of Flownet 2.0, which provides
pixel-level motion between consecutive frames, accurately
reflecting the instantaneous speed of objects in the view [32].
Flownet 2.0 consists of a feature extraction network and a flow
regression network. The feature network takes two consecutive
frames as input and extracts a set of feature maps that
capture the spatial and temporal information of the images.
The flow regression network infers the corresponding optical
flow vectors using these feature maps. Under the assumption
of small movement, spatial coherence [37], and brightness
constancy, the optical flow could be computed as follows:

∂G
∂x

1x +
∂G
∂y

1y +
∂G
∂t

1t = 0 (9)

∂G
∂x

1Vx +
∂G
∂y

1Vy +
∂G
∂t
= 0 (10)

where G is the grayscale image, x and y are pixel coordinates,
and t represents the time index. Vx and Vy are the velocities
of the pixel (x,y) in the X and Y direction, respectively.
The brighter the image color is, the faster the object moves.
This method emphasizes the relationship between the local
features of optical flow, i.e., the relationship behind the pixels
with brighter colors. To learn this relationship, the proposed
method employs the ST-GCN layers for embedding optical
flow graphs, efficiently reducing computational complexity.

Another type of perception data utilized in this method is
the trajectory. As shown in the upper right part of Fig. 1, the
target detection module takes the original images as inputs,
identifies the position of vehicles in the image, and outputs
the coordinates of the top left and bottom right vertexes of the
detection result bounding boxes. For i-th object in the image,
the top left vertex is denoted as ptl

i = (x tl
i , ytl

i ), and the bottom
right vertex is denoted as pbr

i = (xbr
i , ybr

i ), tl stands for top
left while br stands for bottom right. The sequence of points
Pi constitutes a complete trajectory, where Pi = (xi , yi ). Thus,
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Fig. 4. The figures present two methods of feature fusion. (a) shows the
stitching fusion operation (concatenation) of image feature Fi , optical flow
feature Fo, and trajectory feature Ft . (b) shows the isotopic fusion operation
(calculating arithmetic mean).

the geometric center coordinates of the bounding box can be
calculated as: 

xi =
xbr

i + x tr
i

2

yi =
ybr

i + ytr
i

2

(11)

The optical flow and trajectory information reflect the
speed and direction of vehicles, respectively. To characterize
their interactions in low illumination conditions, the proposed
approach implements ST-GCN for graph |representation. The
method defines a new graph G with attributes corresponding to
the set of attributes G t . In this study, the novel kernel function
[23] is adopted within the graph representing, and formulated
as:

ai, j
t =

1

∥vi
t − v

j
t ∥2 + ϵ

(12)

where V = {vi
| ∀i ∈ 1, 2, . . . , N } is the set of vertices of the

graph G t as mentioned in Section II, ϵ is an infinitesimal.
After representing the interaction by using the graph,

ST-GCN implements graph convolutional layers and tempo-
ral convolutional layers to extract features according to the
definition given in [23]:

f (V l , A) = σ(3−
1
2 Ât3

−
1
2 V l W l) (13)

where At is symmetrically normalized by

At = 3−
1
2 Ât3

−
1
2 V l (14)

Ât = At + I (15)

and 3t is the diagonal node degree matrix of Ât , and I is the
identity matrix.

D. Image Feature Extraction

It is necessary to integrate image data to comprehend
the features of the environment. CNN is used in the image
channel to extract image features. LSTM layers are used
to learn this partial and temporal information when small
spatial differences between feature maps are considered. The
sequence of images labeled I t in Section II serves as input for
the image feature extraction module. Firstly, images are resized
to 600 × 480 before consecutively input to the convolutional
neural network and LSTM layers. This process of CNN could
be formulated as:

Lt = C N N (I t ) (16)

Details of the CNN network structure are shown in Fig.15. The
size of the feature map output by CNN is 8× 15 as shown on
the left side of Fig.3 (a). The feature map is serialized to get
a sequence with a stride of 8, and the data 1 × 5 from each
row is used as the input of the LSTM cell.

LSTM is a network with a long-term memory function
consisting of a forgetting gate, input data, and output date,
as shown in Fig.3(b). The forward process of LSTM could be
represented as Eqs. (17a)-(17e). The forget gate decides what
information is left in the cell state and updates the cell state
Eqs. (17a)-(17b). The input gate decides what information to
discard from the cell state Eq.(17c). The output gate controls
the output of the cell state Eqs. (17d)-(17e). At time step t ,
the input and output of the LSTM hidden layer are xt and ht ,
and the memory unit is ct .

ft = σ(W x f xt +Wh f ht−1 + b f ) (17a)
ct = ft ⊙ ct−1 + it ⊙ tanh(W xcxt +Whcht−1 + bc) (17b)
it = σ(W xi xt +Whi ht−1 + bi ) (17c)
ot = σ(W xoxt +Whoht−1 + bo) (17d)
ht = ot ⊙ tanh(ct ) (17e)

where W x f , W xi , W xo are the weight matrices in LSTM cell,
b f , bc, bi , bo are bias, and σ represents the Sigmoid activation
function.

E. Information Fusion

This subsection first introduces components of the trajec-
tory prediction module and the investigation of multi-stream
heterogeneous data fusion methods.

The main objective of the proposed method is to predict the
future trajectory of vehicles in interactive scenarios. Thus, the
Trajectory Prediction Module (TPM) is designed at the end
of the framework. TPM consists of two parts: A multi-stream
fusion convolutional neural network (MFC) and a trajectory
prediction convolutional neural network (TPC).

The TPC takes the optical flow graph embedding feature Fo,
trajectory graph embedding feature Ft , and image feature Fi
with the same dimensions as inputs. Considering the structural
differences between heterogeneous data from multi-stream
sources, this subsection introduces two types of data fusion:
stitching and isotopic fusions.

Stitching fusion can retain the feature information of
multi-stream data to the maximum extent. As shown in
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Fig. 5. The proposed framework implements Monte Carlo Dropout for
epistemic uncertainty estimation. The dropout layers are inserted in the TPM
module and stochastically dropout with a probability p during the inference
process.

Fig.4(a), stitching fusion concatenates features from three
channels of the same size together and transfers them to
the Multi-stream Fusion CNN, which can be formulated as
Eq.(18).

Fig.4(b) shows the isotopic fusion process, which performs
an equal sum operation on three features with the same
dimension and then takes the average. Eq.(19) formulates the
isotopic fusion process:

Ffusion = concat (Ft |Fi |Fo) (18)
Ffusion = mean(Ft + Fi + Fo) (19)
Ffusion = M FC(Ffusion;W fusion) (20)

The trajectory prediction convolutional neural network (TPC),
expanding the temporal dimension by using convolution,
is adapted to generate final bi-variate Gaussian distributed
trajectories Y :

Y = T PC(Ffusion;WTP) (21)

where WTP represents the weight matrix of TPC. Details of
MFC and TPC structure are shown in Fig.15.

Algorithm 1 summarizes the training process of the MSIF
Framework. f, g, τ, H stand for the structure of the optical
flow channel, image channel, trajectory channel, and TPM
module respectively.

F. Epistemic Uncertainty Estimation

Autonomous driving often encounters complex scenarios,
such as tricky traffic conditions, complex road structures,
extreme weather, etc. These disadvantages are usually not
covered by the datasets used to train deep learning models,
which means that the input data is outside the distribution
of the training set. Epistemic uncertainty estimation aims to
detect inputs that lie outside the model’s training distribution,
and it measures how reliable the model is as well. When
the predictive model faces inputs outside the training set’s
distribution, the system can calculate the epistemic uncer-
tainty score according to a specific formula. Furthermore,

Algorithm 1 Trajectory Prediction Training via Multi-Stream
Information Fusion
Require: epoch number T , batch size N , batch of Trajectory

x , batch of images y, pre-calculated optical flow z, struc-
ture of g, f, τ, H

1: # generate pre-trained optical flow feature;
2: ẑk = f (zk)

3: for t = 0 to T do
4: for k = 1 to N do
5: # generate trajectory feature;
6: x̂k = τ(xk)

7: # generate image feature;
8: ŷk = g(yk)

9: if no MC Dropout: then
10: # fused by TPM and predict the trajectory
11: ŝk = H(x̂k, ŷk, ẑk)

12: else
13: # fused by TPM with MC-Dropout and predict the

trajectory
14: ŝk = HMC (x̂k, ŷk, ẑk)

15: end if
16: l ← equation(8)

17: L ← l(sk, ŝk)

18: update networks f, g, τ to minimize the loss L
19: end for
20: end for
21: return the best framework, which consists of f, g, τ, H

the epistemic uncertainty score solves the dilemma of the
insufficient interpretability of the deep learning model to
some extent, and the overall autonomous driving system can
make further decisions according to the epistemic uncer-
tainty score. On this point, Bayesian Neural Network (BNN)
incorporates probabilistic principles to model uncertainty.
Unlike traditional neural networks with fixed weight and
bias, BNN offers distribution over parameters, allowing for
better uncertainty quantification. We denote by y∗, x∗ the
predicted trajectories and the test input, while X ,Y represent
the training input and output. The model uncertainty could be
defined by:

p(y∗| x∗,X ,Y) =

∫
p(y∗| x∗, w) p(w|X ,Y)dw (22)

As shown in Fig.5, to approximate the intractable distribu-
tion p(y∗| x∗, w), we learn variational distribution p(w) by
the sample-based Monte Carlo dropout (MC dropout) [38],
which is a typical method for model uncertainty estima-
tion without changing the architecture of the network. The
proposed framework implements dropout layers in the TPM
module and stochastically dropout with a probability p during
the inference process. After inference N times, a set of
trajectory {y∗1 , y∗2 , y∗3 , . . . , y∗N } are stored and used to eval-
uate the epistemic uncertainty. The confidence score can be
used to measure the uncertainty of the trajectory prediction
model [39]. After MC dropout, the mean p̄∗ti and variance
6̄p∗ti

of N collected trajectories at the same timestep ti could

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 09,2025 at 10:13:10 UTC from IEEE Xplore.  Restrictions apply. 



GONG et al.: LEVERAGING MULTI-STREAM INFORMATION FUSION FOR TRAJECTORY PREDICTION 3861

Fig. 6. The histograms show comparative results of error distributions for ADE and FDE in HEV-I dataset. Error distributions of baseline, MSIF#1, MSIF#2,
and MSIF#3 are presented in blue, red, yellow, and green. The X-axis is the range of predicted error for each test sample. The Y-axis is the percentage of
samples in a different range of errors.

Fig. 7. The histograms show comparative results of error distributions for ADE and FDE in Dark-HEV-I dataset. Error distributions of baseline, MSIF#1,
MSIF#2, and MSIF#3 are presented in blue, red, yellow, and green. The X-axis is the range of predicted error for each test sample. The Y-axis is the
percentage of samples in a different range of errors.

be calculated by Eq.23 and Eq.24.

p̄∗ti =
1
N

∑
n∈N

p
∗(n)

ti (23)

6̄p∗ti
=

1
N

∑
n∈N

(p
∗(n)

ti − p̄∗ti )
2 (24)

C Sx =
|xtrue − µx |i=1,2,3,...,TP < 2σx

TP
× 100% (25)

C Sy =

∣∣ytrue − µy
∣∣
i=1,2,3,...,TP

< 2σy

TP
× 100% (26)

Hence, it is understandable that the variance 6xx and 6yy
measure the dispersion of the predicted data in both the x and
y directions. Then, the standard deviation σ =

√
6 is taken

into account to gauge the confidence score. The confidence
score is calculated by judging whether the prediction lies in
the confidence interval within two standard deviations (2σ ),
thereby quantifying the perceived uncertainty of the model
through the Eq.25 and Eq.26.

III. EXPERIMENTS

This section introduces the Honda Egocentric view-
Intersection dataset, which focuses on interactive scenarios,
to validate the method mentioned above. Experiments demon-
strate that the proposed method performs well on both the

HEV-I and the generated Dark-HEV-I datasets. Besides, details
of experiments, including evaluation metrics, baselines, imple-
mentation details, and experimental results, are presented in
the following subsection. Finally, this section conducts quan-
titative and qualitative analyses to demonstrate the feasibility
and superiority of the proposed approach.

A. Dataset and Evaluation Metrics

1) HEV-I Dataset: Honda Egocentric View-Intersection
(HEV-I) is a vision dataset that focuses primarily on urban
intersection scenarios where vehicles move in uncertain direc-
tions due to the complexity of road layouts and traffic
conditions. The reasons for selecting HEV-I in this work
include: 1) Unlike other standard datasets in autonomous
driving scenarios, the HEV-I dataset contains more videos
and vehicles and pays close attention to the vehicle states
in interactive scenarios. In contrast, a dataset such as KITTI
focuses on the ego vehicle instead of interaction scenarios.
For example, vehicles are parked on roadsides or driving in
one direction in most of their videos. Therefore, the HEV-I
dataset is preferable for trajectory prediction problems in
interactive scenarios. 2) The HEV-I dataset includes driving
scenes captured at various times and under varying light
intensities (including backlighting and low light), enabling
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Fig. 8. This figure presents the sample of HEV-I dataset and generated Dark-HEV-I dataset. Top to bottom: HEV-I image; Dark-HEV-I image; optical flow
from HEV-I image; optical flow from Dark-HEV-I image. Each column corresponds to a scenario.

the model to examine the prediction of trajectories under low
illumination conditions. 3) HEV-I is an egocentric view dataset
as opposed to a BEV view dataset. This vision-based dataset
is more suitable for feature extracting and understanding the
interaction scene of vehicles. The HEV-I dataset contains
230 videos as 1920 × 1200 images in 10Hz and ground truth
trajectories belonging to eight object classes. To obtain dense
optical flow, this approach uses Flownet 2.0 [32] with a 5× 5
Region Of Interest (ROI) Pooling operator to generate a final
flattened feature vector Fo ∈ R50.

2) Dark HEV-I Dataset: The Dark-HEV-I has exactly
the same scale as the HEV-I. Based on the HEV-I dataset,
the new Dark-HEV-I dataset is generated to simulate a
low-illumination autonomous driving environment. To sim-
ulate the low-illumination conditions, the exposure of each
image is adjusted by utilizing the scikit-image library and
implement gamma correction. The principle of gamma cor-
rection could be formulated as follows [40]:

Vout = V g
in (27)

where Vout is the output luminance value, and Vin is the input
luminance value. g denotes the gamma value. If gamma > 1,
the new image will be darker than the original image. If
gamma < 1, the new image will be brighter than the original
image. This function transforms the input image pixelwise
after scaling each pixel to the range 0 to 1. The optical flow
is regenerated by the new images with low exposure. HEV-I
image, Dark-HEV-I image, HEV-I optical flow, and Dark-
HEV-I optical flow are presented from top to bottom in Fig.8.
The new images and the regenerated optical flow together form

the Dark-HEV-I dataset. Each column in Fig. 8 represents one
scenario.

3) Metrics: Average Displacement Error (ADE) [41], and
Final Displacement Error (FDE) [42] are two metrics com-
monly used in trajectory prediction problems to evaluate the
model performance accurately. ADE measures the average
deviation from the ground truth, while FDE measures the
absolute deviation at the endpoints of predicted trajectories.
The lower the ADE and FDE, the better the model per-
formance. Given that the HEV-I dataset is an image-based
ego-centric dataset, the experimental results and evaluation
metrics hereinafter are calculated in pixel coordinates.

Similar to Social-STGCNN [23] and Social-LSTM [42],
the experiments generate 20 samples based on the predicted
distribution and use the following formula to compute ADE
and FDE with respect to the ground truth:

ADE =

∑
n∈N

∑
t∈Te

∥∥ p̂n
t − pn

t
∥∥

2

N × Tp
(28)

F DE =

∑
n∈N

∥∥ p̂n
te − pn

te

∥∥
2

N
(29)

where N represents samples of the test set, Tp is the prediction
time, the ground truth, and the nth sample coordinates at time
step t are denoted as p̂n

te and pn
te .

4) Baselines: Comparing the proposed approach with the
most classical and state-of-the-art models: Structural-RNN,
Social-LSTM, and Social-STGCNN, the main differences
between our models and baseline are shown in the middle
column of the Table II:
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• Structural-RNN Structural-RNN [43] takes the trajecto-
ries as input and successfully combines the high-level
representation of the spatial-temporal graphs with the
sequence learning success of recurrent neural networks.

• Social-LSTM Social-LSTM [42] takes the trajecto-
ries as input, which models the potentially conflicting
social interactions among pedestrians by adopting long
short-term memory cells.

• TrafficPredict TrafficPredict [44] is a long short-term
memory-based (LSTM-based) real-time traffic prediction
algorithm, that consists of an instance layer and a cate-
gory layer.

• Social-STGCNN Social-STGCNN [23] is a spatial-
temporal graph convolutional network that combines
CNN and GCN. It extracts spatial and temporal infor-
mation from the graph to generate suitable embeddings,
which are then utilized by the time convolutional network
to predict pedestrian trajectories.

• MSIF#1 The base model fuses optical and trajectory
information but without image information.

• MSIF#2 The base model fuses image and trajectory
information but without optical flow information.

• MSIF#3 The base model fuses image information, optical
flow, and trajectory information.

B. Implementation Details and Experimental Settings

All experiments utilize the HEV-I dataset, which is divided
into training, validation, and testing sets in a ratio of 7:2:1,
with the corresponding numbers being 4631:1529:665. All
models are implemented using Pytorch, and experiments are
run on an RTX3090 GPU. The optimizer is Adaptive Moment
Estimation (Adam). The initial training rate is set as 1.0e− 6,
and a learning rate scheduler is used to adjust the learning rate
to its 10% every 50 epochs. Table I contains a summary of the
training parameters. Given the modular design of each stream,
a plug-and-play method is developed to fuse heterogeneous
data, satisfying the requirement for flexibility and generality
for the trajectory prediction approach, so that in the future,
additional types of potential perception data can be readily
utilized.

Fig. 9 illustrates the experiment design of this work.
The first experiment validates the performance of the trajec-
tory predictor in standard-illumination scenarios. The second
experiment is designed to validate the predictor performance
in low-illumination conditions. Next, we design case studies
under varying light conditions to verify the adaptability of
the model under different intensities of light. Then, as multi-
stream information exists in the model, the ablation study is
conducted to investigate various feature fusion techniques to
identify a suitable method for producing the most accurate
predictions. Finally, we design an experiment to evaluate the
epistemic uncertainty of the proposed framework.

C. Experiment I: Trajectory Prediction in Normal Scenarios

This study conducts experiments on heterogeneous multi-
stream sensing data in HEV-I dataset. Using Structural-RNN,
Social-LSTM, and Social-STGCNN, TrafficPredict as the

Fig. 9. This figure illustrates the experiment design of this work.

TABLE I
PARAMETERS OF IMPLEMENTATION DETAILS

baseline, this experiment investigates the impact of scenario
images and optical information on the accuracy of intersection
trajectory prediction in standard illumination scenarios. As
shown in Table II, baselines only utilize trajectories of ground
truth bounding boxes, based on which the proposed approach
incorporates optical flow and image information. In this com-
parative study, the difference between MSIF#1 and MSIF#2 is
that the input of MSIF#1 is trajectories and optical, whereas
the input of MSIF#2 is trajectories and images, while the
MSIF#3 combines the information of the three. Considering
the significance of fast prediction in autonomous driving,
we investigate the time cost of MSIF#1, MSIF#2, and MSIF#3.
In the configuration environment outlined in this article, it is
observed that MSIF#1 solely relies on the trajectory and
optical flow modules for its operations. Consequently, the
inference time for MSIF#1 is approximately 49 ms. MSIF#2
incorporates the VGG-MINI architecture to facilitate image
feature extraction, which involves a convolution operation that
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TABLE II
QUANTITATIVE RESULTS OF PROPOSED APPROACH AND BASELINES ON HEV-I AND DARK-HEV-I WITH METRICS ADE/FDE

Fig. 10. The visualization of the adjacency matrix reflects the effectiveness
of spatial-temporal GCN in modeling the agents’ interaction.

is relatively computationally intensive, resulting in an infer-
ence time of around 1,090 ms. Lastly, MSIF#3 amalgamates
diverse multi-stream information, making the inference time
the lengthiest among the three configurations, amounting to
approximately 1,510 ms. The experimental results presented
in Table II demonstrate that the proposed method outperforms
the baseline Social-STGCNN in HEV-I dataset. Comparing
the baseline to MSIF#1, ADE decreases from 58.65 px to
51.10 px, and FDE decreases from 56.95 px to 50.76 px,
indicating that optical flow improves the accuracy of trajectory
prediction results. MSIF#2 achieves ADE of 60.95 px and FDE
of 52.93 px, which indicates that MSIF#2 (with images) is
mediocre on the metrics of ADE and FDE but does not indicate
its misunderstanding of interactive scenarios adequately. The
best-performing model MSIF#3 achieves ADE of 33.18 px and
FDE of 45.77 px, representing respective increases of 43.43%
and 19.63% over the baseline.

Fig.6 presents comparative results of the error distribution.
Baseline, MSIF#1, MSIF#2, and MSIF#3 error distributions
are depicted in blue, red, yellow, and green, respectively. The

X-axis depicts the predicted error range for each test sample.
The Y-axis represents the percentage of samples within each
error range. The closer the histogram is to the Y-axis, the more
accurate the prediction. In Fig.6, the error percentages of ADE
and FDE in the range of 0 px to 5 px for MSIF#3 (green) are
more than 20%, far exceeding those of MSIF#1. For MSIF#1,
the proportion of ADE between 8 and 12 is close to 35%, and
the percentage of FDE between 5 px and 10 px is close to
30%. The closer the histogram of MSIF#3 is to the Y-axis,
the higher the percentage, so MSIF#3 has the best prediction
performance.

Understanding the implicit interactions among agents within
a given scene presents a formidable challenge. In the pro-
posed framework, we leverage the spatial-temporal graph
neural network to effectively capture and represent trajectory
information. Following the provided formula 12, the con-
structed graph’s adjacency matrix, derived from the trajectory
points during the preceding moment, highlights the extent
of influence between agents and delineates their interaction
correlation. Fig. 10 illustrates the trend of the adjacency matrix
normalized to [0, 1] spanning time intervals t = 1 to t = 6 for
a scenario involving seven agents. Notably, the intensity of the
color directly corresponds to the strength of interaction, with
brighter shades indicating heightened interaction and darker
hues signifying reduced correlation between the two agents.

Fig.12 reflects the loss during the training and valida-
tion process. The loss value during training is stable after
20 epochs, whereas the loss value during validation decreases
gradually in the early stages and stops decreasing after ten
epochs. The loss curve demonstrates that the model can
effectively fit the trajectory.

D. Experiment II: Trajectory Prediction in Low-Illumination
Scenarios

This experiment is conducted to validate the performance
of the proposed method in low-illumination scenarios. The
experimental results of the generated Dark-HEV-I dataset pre-
sented in Table II demonstrate that the proposed MSIF method
achieves accurate prediction results under low-illumination
conditions. MSIF#1 has an ADE of 50.32 px and an FDE
of 50.15 px. MSIF#2 achieves ADE of 220.60 px and FDE
of 140.52 px, indicating that only integrating images with
low illumination significantly affects the comprehension of
scenarios. MSIF#3 achieves ADE of 44.94 px and FDE of
64.76 px. MSIF#1 achieves a lower FDE, while MSIF#3
has a lower ADE in the Dark-HEV-I dataset. Fig.7 presents
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Fig. 11. This figure shows the performance of the proposed approach in the low-illumination scenario. We choose four illumination scenarios in the test
set and visualize the predicted trajectories distribution. Top to Bottom: Ground truth, Baseline, MSIF#3. The result shows that the trajectory distribution of
MSIF#3 is closer to the ground truth.

comparative results of the error distribution in the Dark-HEV-
I dataset. MSIF#2 (yellow) is underperforming, as the ADE
is lower than 15% in each interval in the range of 0 px
to 100 px. In terms of ADE, the performance of MSIF#3
(green) is similar to MSIF#1 (red) with 20% the percentage
of the ADE error distribution. While in terms of FDE, the
percentage of the error distribution of FDE is greater than
15% in both the range of 0 px to 5px and 5px to 10 px.
Furthermore, the distribution curve (the 5th column) shows
that the histograms of MSIF#1 and MSIF#3 are closer to the
Y-axis which indicates that MSIF#1 and MSIF#3 outperform
the baseline in low illumination conditions.

The performance of the proposed method in the low-
illumination scenario1 is depicted in Fig. 11. We select four
poor illumination scenarios from the Dark-HEV-I dataset and
visualize the distribution of predicted trajectories. The ground
truth, the result of baseline, and the result of MSIF#3 are
presented from top to bottom. Although scenario I is a complex
scenario where many vehicles pass through the intersection
at a fast speed, the predicted trajectory of MSIF#3 effec-
tively covers the ground truth, demonstrating the accuracy
of MSIF#3 for long trajectory prediction. Scenario II is a
car-following case, in which the predicted result of MSIF#3
is more reasonable than the baseline. In scenario III and
scenario IV, MSIF#3 can forecast the direction of the opposite
vehicles. In summary, the predicted distribution of MSIF#3 tra-
jectories is closer to the ground truth, indicating that MSIF#3
achieves accurate trajectory prediction in a low-brightness
environment.

1The video demo is available at https://www.youtube.com/watch?v=
jnGJwwthkFE.

E. Experiment III: Validation of Adaptability in Different
Illumination Scenarios

The first and the second experiment validate the
performance of the proposed method in standard and low-
illumination conditions, respectively. This experiment is con-
ducted to verify the adaptability of the proposed MSIF to
different illumination conditions. The illumination of the sce-
nario is changed by using the gamma correction as mentioned
in Eq.27, which adjusts the exposure degree (gamma from
1.0 to 2.5) of the images to simulate the different light levels
throughout the day. Fig. 13 shows the gradual change in
illumination for two scenes. From top to bottom, the gamma
value equals 1, 1.4, 1.8, 2.0, and 2.5, respectively. Then, these
newly generated images are used to produce corresponding
optical flow information.

This experiment uses the model weights obtained by train-
ing at the Dark-HEV-I dataset (gamma equal to 2) to test the
trajectory prediction performance under other light intensities.
As shown in Table III, when gamma varies from 1.0 to 2.5,
the ADE and FDE metrics of MSIF#1 fluctuate in a small
range, and metrics of MSIF#3 show an upward trend. As
MSIF#3 integrates the image information with low light level,
but MSIF#1 does not, it is reasonable to speculate that the
low-illumination images do have a serious impact on the
trajectory prediction results.

F. Experiment IV: Ablation Study

This subsection investigates the influence of the parameters
in the neural network on the model performance. Firstly,
we adjusted the number of ST-GCN layers to explore the
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Fig. 12. Figure (a) reflects the loss during training and figure (b) reflects
the validation process. The loss value during training is basically stable after
20 epochs, and the loss value during validation decreases smoothly in the
early stage and stops decreasing after 10 epochs. The loss curve demonstrates
that the model can fit the trajectory effectively.

TABLE III
COMPARATIVE RESULTS WITH DIFFERENT ILLUMINATION CONDITIONS

ON MSIF#1 AND MSIF#3

relationship between the number of network layers and tra-
jectory prediction performance. Then, we design experiments
on various feature fusion techniques to identify a suitable
method for producing the most accurate predictions. As shown
in Fig.15, the proposed approach adapts three different fusion
methods (Mean, Weighted Mean, and Concatenation). Refer-
ring to Fig.15, the output features of all three channels have
the same dimension, such as [1, 5, 8, 2]. The fusion module
calculates the numerical mean or concatenates these features in
the second dimension. To ensure that the output of the fusion
operation meets the TPC, the fused feature will be input MFC

Fig. 13. This figure shows the gradual change in illumination for two scenes.
Top to bottom: gamma is equal to 1, 1.4, 1.8, 2.0, and 2.5, respectively.

TABLE IV
QUANTITATIVE RESULTS OF MSIF#3 WITH DIFFERENT NUMBER

OF ST-GCN LAYERS ON HEV-I AND DARK-HEV-I

TABLE V
QUANTITATIVE RESULTS OF MSIF#3 WITH DIFFERENT FUSION METHODS

ON HEV-I AND DARK-HEV-I

to change the number of channels if concatenation fusion is
selected.

As shown in Table. IV, the result of two ST-GCN layers
and three ST-GCN layers is close. One layer of ST-GCN is
the best setting that achieves the lowest ADE in both the
HEV-I dataset and the Dark-HEV-I dataset. Thus, one layer
of ST-GCN is chosen as the best parameter in the following
experiment. Table. V reflects that the feature concatenation
methods outperform other fusion methods. The TPC with two
convolutional neural network layers (FCNN x2) achieves the
lowest ADE and FDE in both HEV-I and Dark-HEV-I datasets.
The Mean feature fusion method gets ADE of 60.28 and FDE
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Fig. 14. A histogram of confidence scores in the X and Y directions. Using
confidence scores to measure epistemic uncertainty based on the MC Dropout
method.

of 54.30, however, due to the low illumination conditions in
Dark-HEV-I, the Mean fusion method does not perform well,
with ADE of 915.43 and FDE of 972.13. FCNN (x2) is finally
implemented in the TPC module due to its better performance.

G. Experiment V: Epistemic Uncertainty Estimation

Fig.14 reflects the model uncertainty of the proposed frame-
work on HEV-I and Dark-HEV-I datasets. To assess the
model’s epistemic uncertainty, we followed the methodology
outlined in Section II-F and calculated separate confidence
scores for the X direction and the Y direction. Analysis of
Fig.14 (a) and Fig.14 (b) reveals that, across all models and
datasets, the confidence scores in the Y direction tend to be
higher compared to those in the X direction. Notably, Base-
line, MSIF#1, and MSIF#3 consistently achieved confidence
scores above 80%, with MSIF#1 reaching an impressive score
of 85.3% on the Dark-HEV-I dataset. Conversely, beyond
a certain probability of dropout, MSIF#2 exhibited lower
confidence scores below 80% in both the X and Y directions.
Specifically, in the X direction, MSIF#2 achieved confidence
scores of 77.1% and 68.5% on the two datasets, while the
corresponding scores in the Y direction were slightly higher
at 78.2% (HEV) and 73.1% (Dark-HEV-I), respectively.

Evidently, the model epistemic uncertainty of MSIF#1,
which exclusively integrates trajectory and optical flow infor-
mation, manifests as the most minimal. In contrast, the
MSIF#2, which incorporates image information, proves to be

Fig. 15. This figure presents the detailed architecture of MSIF, including
the image channel, the optical channel and the trajectory channel. The upper
left side shows the architectural details of image feature extraction. The upper
middle and upper right parts show layer details of the optical flow channel
and trajectory channel, which consist of spatial-temporal GCN (ST-GCN).
The lower middle part shows how features from three channels fuse and the
architecture details of multi-stream Fusion CNN.

susceptible to the influence of multi-stream fusion data. This
susceptibility is reflected in its notably low confidence score
and heightened epistemic uncertainty.

IV. CONCLUSION

To address the trajectory prediction issue in low-light con-
ditions, this article proposes MSIF, a multi-stream information
fusion-based approach, considering the interaction of the vehi-
cle in the low-illumination environment. The image channel
uses a convolutional neural network and LSTM layers for
feature extraction and scene understanding. ST-GCN describes
the interactivity of vehicles in both the optical flow channel
and the trajectory channel. The proposed approach uses the
Trajectory Prediction Module (TPM) to achieve feature fusion
and trajectory prediction. To simulate the low-illumination
conditions, the Dark-HEV-I dataset is created. The model is
validated using both the HEV-I dataset and the generated
Dark-HEV-I dataset. The multi-stream comparative experiment
demonstrates that the proposed method outperforms baseline
methods regarding trajectory prediction metrics. The study
on feature fusion demonstrates that our method effectively
combines multi-stream heterogeneous data. The qualitative
analysis demonstrates that the trajectories predicted by our
model in complex interaction scenarios are more reasonable
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and realistic, demonstrating the adaptation to a low-light
environment and achieving scene understanding. This method
applies to intelligent networked vehicle driving scenarios and
can be implemented on the roadside for various applications.

In the future, we will investigate the application of richer
perception data for trajectory predictions in extreme condi-
tions, as well as more effective data fusion techniques. Besides,
novel architecture will be investigated for interaction and scene
understanding, especially graph-based neural networks [45],
[46], [47]. Furthermore, considering the high-efficiency and
real-time requirements of autonomous driving [48], [49],
we will explore the light-weighted trajectory prediction net-
works in low-illumination scenarios.

APPENDIX

Fig.15 presents the detailed architecture of MSIF, including
the image channel, optical channel, and trajectory channel. The
upper left side of Fig.15 shows architecture details of image
feature extraction. The upper middle and upper right parts
show layer details of the optical flow channel and trajectory
channel, which consist of spatial-temporal GCN (ST-GCN).
The lower middle part shows how features from three channels
fuse and the architecture details of multi-stream Fusion CNN.
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