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Abstract— Developing autonomous vehicles (AVs) helps
improve the road safety and traffic efficiency of intelligent
transportation systems (ITS). Accurately predicting the trajec-
tories of traffic participants is essential to the decision-making
and motion planning of AVs in interactive scenarios. Recently,
learning-based trajectory predictors have shown state-of-the-art
performance in highway or urban areas. However, most existing
learning-based models trained with fixed datasets may perform
poorly in continuously changing scenarios. Specifically, they may
not perform well in learned scenarios after learning the new one.
This phenomenon is called “catastrophic forgetting”. Few studies
investigate trajectory predictions in continuous scenarios, where
catastrophic forgetting may happen. To handle this problem,
first, a novel continual learning (CL) approach for vehicle
trajectory prediction is proposed in this paper. Then, inspired
by brain science, a dynamic memory mechanism is developed by
utilizing the measurement of traffic divergence between scenarios,
which balances the performance and training efficiency of the
proposed CL approach. Finally, datasets collected from different
locations are used to design continual training and testing
methods in experiments. Experimental results show that the
proposed approach achieves consistently high prediction accuracy
in continuous scenarios without re-training, which mitigates
catastrophic forgetting compared to non-CL approaches. The
implementation of the proposed approach is publicly available
at https://github.com/BIT-Jack/D-GSM.

Index Terms— Continual learning, interactive behavior mod-
eling, intelligent transportation systems, autonomous vehicles,
trajectory prediction.
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NOMENCLATURE

Symbol Definition
th Observed time horizon.
t f Predicted time horizon.
tr Positions of vehicles.
t̂r Predicted position of vehicles.
Nts Number of testing samples.
X Historical trajectories observed by predictor.
Y Future trajectories to be predicted.
0 Bivariate Gaussian distribution over the

predicted time horizon.
XN

cond Condition considered N surrounding vehicles.
CKLDwt

i, j Weighted-CKLD between distribution pi

and p j .
mD

r Amounts of memory data allocated to the
r th task.

fθ Model parameterized by θ .
f ′θ Model state at the end of learning of the last

task.
gr Loss gradient of the r th previous task.
S Continuous scenarios.
di The i th scenario in continuous scenarios.
c Index of “the current scenario”.

I. INTRODUCTION

AUTONOMOUS vehicles (AVs) play an essential role
in improving traffic safety and efficiency in intelligent

transportation systems (ITS) [1]. Since understanding inter-
active behavior of road users and predicting their future
trajectories support the efficient decision-making and enable
the risk assessment of AVs, they are fundamental to develop
AVs [2], [3], [4].

In early studies, trajectories of vehicles are predicted based
on kinetic and dynamic models [5], [6]. These approaches
are classified into physics-based methods in [7]. Physics-
based methods perform well in short-term (less than 1s)
prediction. However, driving behaviors among vehicles influ-
ence each other, but these methods do not consider these
interactive behaviors. Thus, physics-based methods cannot
handle changes caused by the execution of a particular
behavior (e.g., a lane-changing action, acceleration, or brake).
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It limits their long-term prediction performance in interactive
scenarios [7].

More advanced interaction-aware methods are developed to
overcome these limitations. Most interaction-aware methods
are learning-based, which predict future trajectories based on
the modeling of interactions between agents [8]. By utilizing
Long Short-Term Memory (LSTM), Social LSTM is the
first work that modeled interactions between pedestrians as
social behaviors [9]. In Social LSTM, a grid-based pooling
mechanism was designed to represent the spatial information
of pedestrians in a scene. Then social-pooling layers were
used to capture interactions among pedestrians based on the
spatial information. Reference [10] improved the performance
of Social LSTM by applying convolutional layers to replace
the fully connected layers.

Moreover, Social LSTM was applied in the generator of
Generative Adversarial Networks (GAN) to predict socially
plausible trajectories in Social GAN [11]. Due to the more
explicit modeling of interactions, graph-based methods with
the better interpretability are developed. Graph-based methods
represent interactions between agents by the nodes and edges
in graphs. In [12], interactions and trajectories were modeled
as spatial-temporal graphs using a Graph Neural Network
(GNN). Then trajectories of vehicles and pedestrians were
predicted by a GNN-based multitask learning framework. Sim-
ilarly, [13] extracts interactions into social behavior graphs.
Then a graph convolutional neural network was applied to
propagate social interactions in such graphs, outperforming
prior works.

However, the studies above mainly focus on designing net-
works or architectures to improve the accuracy of predictions.
Most existing models are trained and tested specifically for
each dataset. Models may fail under this learning paradigm if
testing data distribution differs from the training data distribu-
tion [14], [15]. Meanwhile, AVs are expected to drive through
various scenarios continually in applications. Since factors
including traffic rules, the density of traffic flow, and road
geometry are divergent, interactive behaviors vary in different
scenarios. Most models need to be re-trained on increasing
datasets to guarantee the good performance in continuous
scenarios [16]. With a heavy computing burden and data
storage requirement, this scheme is not efficient and practical.
This paper is inspired by Continual Learning (CL) [17], which
trains models on new data streams without directly accessing
old data to address these problems.

Given a potentially unlimited data stream, learning from a
sequence of partial experiences where all data is not avail-
able at once is called Continual Learning [16]. In continual
learning, the model is updated with a dataset of the current
task without directly accessing old ones. As shown in Fig. 1,
models in this work observe different scenarios sequentially.
Only the data of currently observed scenario are fully avail-
able.The data of past scenarios can be stored with limited
amounts by CL strategies. Under this assumption, trainable
parameters of non-CL models are optimized to minimize the
loss of the current scenario. Conversely, the training loss of
past scenarios is ignored. Thus, non-CL models may have
low prediction accuracy in past scenarios after learning the
new one, which is called “catastrophic forgetting”. In other

Fig. 1. Continuous scenarios are coming in a sequence. Due to the
limited data sustainability, the data of past and unseen scenarios are not
fully accessible. In continuous scenarios, trajectory predictor trained with the
current scenario data may have poor performance in learned scenarios (old
tasks), which is called catastrophic forgetting. The proposed CL approach
aims to address this problem. Measurements of the traffic divergence (task
similarity) are also exploited to reduce learning cost in this study.

words, catastrophic forgetting happens since models try to
“fit” the current task without considering the performance on
past ones. Most learning based approaches are data-driven.
From the aspect of data, one of the reasons for catastrophic
forgetting is that the distributions of training data and the
testing data are different, where the datasets corresponding
to different tasks are not independent and identical distributed
(non-i.i.d.) [18]. One of the primary purposes of continual
learning strategies is to alleviate catastrophic forgetting [17],
[19], [20]. To overcome the catastrophic forgetting, this paper
aims to enable learning-based trajectory predictors to have
consistent good performance in sequential tasks without re-
training. The task similarity is also exploited to balance the
learning cost and the performance.

More detailedly, this work is inspired by rehearsal methods,
which are advanced strategies in CL [21], [22], [23]. Rehearsal
methods achieve the goal of CL by using a memory system
to keep the learned knowledge. The specific strategy used in
this work is Gradient Episodic Memory (GEM) [23]. GEM
firstly uses the data stored in the episodic memory to calculate
losses on previous tasks. Then, these losses are utilized to
define an inequality constraint, interfering with the training
process. Under the constraint, models are required to avoid
the increment of losses on previous tasks when updating the
trainable parameters to mitigate the catastrophic forgetting.

In this research, a novel CL approach termed Dynamic
Gradient Scenario Memory (D-GSM) is proposed for the
prediction of vehicle trajectory in continuous scenarios. Com-
pared with non-CL models, D-GSM improves the predicting
performance in continuous scenarios by constraining the loss
increment in observed scenarios. Moreover, inspired by brain
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science [24], a dynamic memory is designed in D-GSM by
exploiting the similarity of tasks. The similarity of tasks
are modeled by traffic divergence between scenarios. Instead
of treating all previous tasks equally as in [25] and [26],
the dynamic memory allocates different memory resource
to divergent tasks, balancing the performance and training
efficiency of the CL strategy in D-GSM. Main contributions
of this paper are:

1) A novel continual learning approach named Dynamic
Gradient Scenario Memory (D-GSM) is proposed for
interactive behavior learning in continuous scenarios.
With the help of GEM, the proposed D-GSM enables
learning-based prediction models to consistently perform
well in various scenarios coming in a sequence without
re-training by avoiding the increment of losses on previ-
ous tasks.

2) A new metric based on Kullback-Leibler divergence
(KLD) is proposed to measure traffic divergence between
different scenarios. The distance between distributions of
different scenario data is measured by the KLD-based
metric, representing the traffic divergence. Furthermore,
a dynamic memory exploiting the measurement of traffic
divergence is developed to improve the training efficiency
of the proposed CL approach.

3) Evaluation methods for vehicle trajectory prediction in
continuous scenarios are designed. Then, three experi-
ments are conducted based on the divergent scenario data
collected from different locations. It should be noted that
the proposed CL approach is a plug-and-play approach.
The base model adopted in experiments is demonstrated
as an example.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this work, interaction-aware predictors are trained using
a sequence of datasets collected in different scenarios. To for-
mulate the trajectory prediction in continuous scenarios, the
fundamental problem, i.e., the prediction of vehicle trajec-
tory in the interactive scenario, will be firstly formulated in
Section II-A. Then, based on the fundamental problem, the
CL task for trajectory prediction in continuous scenarios will
be described in Section II-B.

A. Trajectory Prediction in Interactive Scenarios

As most interactive behavior learning research [12], [27],
[28], this work considers scenarios with highly interactive
behaviors among vehicles, including scenarios in urban and
highways. The scenarios in this work are represented by
datasets collected from divergent locations at different times.
The scenario is defined as a traffic region with specific road
geometry and interactive traffic participants. It is assumed
that datasets representing different scenarios can be non-i.i.d.
Both intuitive comparisons and rigorous statistics will be
provided in Section IV-A to show this property. This paper
also proposes a method in Section III-B to quantitatively
measure the divergence between distributions of motion data
from different scenarios. The following of this subsection
will generally formulate the trajectory prediction task in the
interactive scenario.

In an interactive scenario, driving behaviors and motions of
vehicles influence each other. The interaction-aware trajectory
predictor observes historical trajectories of vehicles in the
scene over th seconds. Then, it predicts future trajectories
of target vehicles over t f seconds. In detail, the input to the
predictor is:

X =
[
tr(t−th), . . . , tr(t−1), tr(t)

]
. (1)

In (1), tr(t) =
[
x (t)

0 , y(t)
0 , . . . , x (t)

i , y(t)
i , . . . , x (t)

n , y(t)
n

]
rep-

resents x and y co-ordinates of vehicles at time t . tr(t)

includes x (t)
0 and y(t)

0 , representing co-ordinates of the target
vehicle (predicted vehicle). x (t)

i and y(t)
i , (i = 1, . . . , n) are

co-ordinates of surrounding vehicles. Since decision-making
expects the prediction to provide all possible future
motions [4], the output is not a single predicted trajectory
of target vehicle. Instead, the output is considered as the
estimated bi-variate distribution over:

Y =
[
tr(t+1)

0 , . . . , tr(t+t f )
0

]
, (2)

with tr(t)
0 =

[
x (t)

0 , y(t)
0

]
are future co-ordinates of the target

vehicle. Thus, the output can be formulated as:

P(Y|X) ∼ 0. (3)

where 0 =
[
0(t+1), . . . , 0(t+t f )

]
are parameters of a bivariate

Gaussian distribution at each time step over the prediction
horizon. After introducing the fundamental task, the CL task
for trajectory prediction in continuous scenarios is described
in Section II-B.

B. Continual Learning Task for Trajectory Prediction

CL problem consists of a sequence of tasks coming in
a stream [16], [19]. In this work, tasks refer to trajectory
predictions in interactive scenarios, which is formulated in
Section II-A. Due to the limited data and computing resource,
it is assumed that all data are not available at once. Moreover,
the observed data cannot be entirely stored. Under these
assumptions, the trajectory predictor is expected to perform
well consistently in sequential tasks, i.e., predictions in con-
tinuous scenarios. Important concepts of the CL tasks in this
work are defined as follow:

1) Continuous Scenarios: Continuous scenarios consist of
a sequence of datasets which can be characterized as S =
{d1, . . . , dc, . . . dn}. Samples in each dataset di are collected
in the same location, which are assumed corresponding to an
unknown distribution 9i , while distinct datasets are collected
in different location at different time. The scenario is rep-
resented by di . The AV is assumed to pass these scenarios
orderly, and di ∈ S, (i = 1, . . . , n) is the i th scenario to be
observed by the AV. It should be noted that scenarios are
allowed to appear in S more than one times, corresponding
to the situation that the AV passes the same scenario again.

2) Current Scenario: The current scenario refers to the
newly coming scenario dc in S. The data of the current
scenario are fully available to train the trajectory predictor.
The trajectory prediction in the current scenario corresponds
to the current task in CL.
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Fig. 2. Dynamic Gradient Scenario Memory (D-GSM): When a new traffic scenario arrives, scenario repository will firstly store new data as memory data.
Then, the traffic divergence measurement module utilizes memory data to measure the divergence between the current scenario and each past scenario. Based
on the measuring of divergence, the dynamic memory module allocates memory data with different amounts for different previous tasks to the CL module.
Finally, with the help of GEM strategy, the trajectory predictor is trained in the CL module. Since the more memory data bring the higher computing cost,
the dynamic memory balances the training efficiency and performance by allocating memory data in a reasonable way.

3) Past Scenarios: In continuous scenarios S, the scenarios
di ∈ S, (i = 1, .., c − 1) that have been observed are termed
past scenarios. The data of past scenarios cannot be directly
used for training, while the CL strategy can store these
data with limited amounts. The trajectory predictions in past
scenarios refer to previous tasks in CL.

4) Future Scenarios: The scenarios d j ∈ S, ( j = c +
1, .., n) to be arrived are termed future scenarios. Data of
future scenario are not available. The next “current scenario”
will come from future scenarios. The number of scenarios n
can be unknown.

5) Catastrophic Forgetting: Catastrophic forgetting in this
work refers to the phenomenon that the prediction accuracy
in past scenarios declines after the predictor learns the data of
current scenario.

After learning the data of current scenario, a trajectory
predictor is expected to perform well among all scenarios
that have been learned. For example, in continuous scenarios
S = {d1, . . . , dc, . . . , dn}, the data of the current scenario

dc ∈ S are fully accessible for training. Conversely, the data of
past scenarios di ∈ S, (i = 1, .., c − 1) are not fully accessible.
The performance of prediction is evaluated on all testing sets
from di ∈ S, (i = 1, .., c). Denoting the prediction error in the
i th scenario as Ri , the aim of CL task for trajectory prediction
in continuous scenarios is to minimize the average errors R
of all scenarios that have been learned in S:

minimize R =
1
c

c∑
i=1

Ri . (4)

III. DYNAMIC GRADIENT SCENARIO MEMORY FOR
VEHICLE TRAJECTORY PREDICTION

This section introduces the proposed CL approach for
vehicle trajectory prediction in continuous scenarios, termed
Dynamic Gradient Scenario Memory (D-GSM). As shown
in Fig. 2, D-GSM consists of four modules: 1) a sce-
nario repository, 2) a traffic divergence measuring module,
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3) a dynamic memory module, and 4) a dynamic
memory-aware continual learning module.

Since the old data is not directly accessible, the scenario
repository is used to store the observed data of past scenarios
as memory data. When a new scenario comes, the scenario
repository updates by storing new data with abandoning a
part of old memory data due to the limited storage. Then,
the traffic divergence between the current and past scenarios is
measured using the memory data from the scenario repository.
Next, according to measuring results, the dynamic memory
module dynamically allocates memory data into the CL mod-
ule. Finally, with the help of allocated memory data, the CL
module trains the trajectory predictor using GEM strategy.
The details of four modules in D-GSM are presented in
Section III-A, Section III-B, Section III-C, and Section III-D,
respectively.

A. Scenario Repository

The scenario repository is used to store observed data with a
limited amount as memory data. In S = {d1, . . . , dc, . . . , dn},
when a new scenario dc arrives, the scenario repository updates
by storing the data from the current scenario dc. Since the
storage space of the repository is not infinite, it also abandons
a part of memory data stored from di (i = 1, . . . , c − 1).
Supposing the upper limit of data storage is M , amount
of memory data corresponding to the i th scenario will be
mi = M/c. Thus, when a new scenario arrives, mi declines
while c increases.

In D-GSM, the memory data stored in the scenario repos-
itory are used to measure the traffic divergence between
scenarios. Then, according to the measurement, the dynamic
memory module allocates memory data into continual learning
modules for model training. Different tasks are allocated with
different amounts of memory data to improve the training
efficiency.

B. Traffic Divergence Measuring

The divergence between different scenarios is the main
reason causing catastrophic forgetting of trajectory prediction
in continuous scenarios. On the contrary, if the new scenario is
quite similar with the observed one, the catastrophic forgetting
may not happen. Moreover, exploiting similarity of tasks is
also a key factor in CL [24]. Thus, the divergence (or described
as similarity) measurement between traffic scenarios is con-
sidered in this work. In detail, traffic divergence measuring
module in D-GSM uses a KLD-based metric to quantify the
traffic divergence between scenarios. The measurement esti-
mates the similarity between CL tasks, enabling the strategy
of data allocation in dynamic memory module.

According to previous studies [26], [29], the divergence
between interactive scenarios can be represented by the dif-
ference of spatiotemporal dependency among vehicles. From
the aspect of scenario data, the spatiotemporal dependency can
be formulated as the conditional probability density function
(CPDF) p (Y|X), where Y represents the future trajectories of
the predicted vehicle, and X represents the observed historical
trajectories of all vehicles.

Supposing p1 and p2 are the CPDFs of two scenarios.
The distance between CPDFs are calculated by conditional
Kullback-Leibler divergence (CKLD):

CKLD (p1 (Y|X) ||p2 (Y|X))

=

∫
p1 (X)

∫
log

(
p1 (Y|X)

p2 (Y|X)

)
p1 (Y|X) dYdX, (5)

In (5), p1 and p2 are approximated by estimations of
Gaussian Mixture Models (GMMs) from a Mixture Density
Networks (MDN) [30]. It should be noted that, in the imple-
mentation, to facilitate the learning process, the condition X
with fixed dimensions is used, which only considers the
closest N surrounding vehicles. Besides, to represent the
interactions of vehicles, instead of directly using historical
trajectories, k eigenvectors of a 2D Laplacian matrix concate-
nated with historical trajectories of the predicted vehicle X0 =[
tr(t−th)

0 , . . . , tr(t−1)
0

]
are used to generate the condition X.

To distinguish this processed condition X from the historical
trajectories described in (1), we denote this condition one
as XN

cond :

XN
cond = [X0, v1, . . . , vk], (6)

where vi (i = 1, . . . , k) are eigenvectors of a 2D Laplacian
matrix.

Supposing that e
(

trk
i , trk

j

)
is Euclidean distance between

the i th vehicle and j th vehicle at time k, and λ is a decay
parameter, the Laplacian matrix Lp is computed by:

Lp = D− A (7)

where A =
(
ai, j

)
N×N and D =

(
di, j

)
N×N . The elements in

matrix A and D are calculated by:

ai, j = exp

− t−1∑
k=t−th

ωke
(

trk
i , trk

j

)
/

t−1∑
k=t−th

ωk

 ,

ωk = λ(t−1)−k, k = t − th, . . . , t − 1,

di, j =


N∑

j=1

ai, j , i = j

0, i ̸= j,

(8)

After estimating the GMM for each condition XN
cond , Monte-

Carlo sampling is used to compute the Kullback-Leibler
divergence (KLD) since the KLD between two GMMs is
not analytically attractable. Then CKLD is obtained based
on KLD. Specifically, assuming that distribution p1(XN

cond)

has n1 samples denoted as XN
cond,i (i = 1, . . . , n1), nmc

samples denoted as Y j ( j = 1, . . . , nmc) are sampled from
p1(Y|XN

cond,i ), KLD between two distributions is obtained by
Monte-Carlo sampling:

KLD
(

p1

(
Y|XN

cond,i

)
||p2

(
Y|XN

cond,i

))
=

1
nmc

nmc∑
j=1

(
log p1

(
Y j |XN

cond,i

)
− log p2

(
Y j |XN

cond,i

))
.

(9)
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Finally, CKLD is calculated as:

CKLD
(

p1

(
Y|XN

cond

)
||p2

(
Y|XN

cond

))
=

1
n1

n1∑
i=1

KLD
(

p1

(
Y|XN

cond,i

)
||p2

(
Y|XN

cond,i

))
. (10)

Moreover, since the original KLD is calculated using mem-
ory data in the scenario repository with a storage limit, the
amount of memory data for each scenario decreases when a
new scenario arrives, as stated in Section III-A. The influence
of data usage on CKLD is also considered in this paper. More
investigations and the basic requirement of this calculation are
represented in Appendix D.

CKLD can preliminarily reveal the divergence between
scenarios since large CKLD indicates a significant distance
between GMMs. If two scenarios are the same, CKLD
will equal zero. However, CKLD is asymmetrical, which
means that if the p1 and p2 are exchanged in (5), CKLD
will be different. The asymmetry may lead to contradictory
measuring results when comparing divergence among traffic
scenarios. Therefore, this work proposes a novel metric termed
weighted-CKLD to address the problem mentioned above. The
weighted-CKLD is calculated as:

CKLDwt
1,2 = w1CKLD (p1||p2)+ w2CKLD (p2||p1) (11)

In (11), w1 and w2 are weights (w1 + w2 = 1). And p1 and
p2 in (11) represent CPDFs of scenarios to compare. Which
weight needs to be assigned a larger value depends on which
distribution we pay more attention to. For example, there are
three CPDFs {p1, p2, p3} corresponding to three scenarios.
We want to compare the divergence between {p1, p2} and
{p1, p3}. The weighted-CKLD CKLDwt

1,2 and CKLDwt
1,3 need

to be calculated. In this case, the highlighted one is p1. Then
we choose larger values for w1 in CKLDwt

1,2 and CKLDwt
1,3.

In our work, D-GSM explores the relationship between
catastrophic forgetting and the spatiotemporal dependency
divergence between current traffic scenarios and past sce-
narios. Thus the highlighted scenario is the current one.
Weighted-CKLD measuring the traffic divergence is utilized
to improve the training efficiency of CL module by applying
the dynamic memory, which is introduced in Section III-C.

C. Dynamic Memory Module

The dynamic memory module allocating different mem-
ory data for divergent tasks to improve the efficiency of
CL is inspired by the synaptic theory of memory in brain
science [31]. The synaptic theory indicates that the forget-
ting process can become rapid when memory resources are
restricted [24], [32]. The idea inspired by brain science and
the allocating principle in the dynamic memory module are
shown in Fig. 3. In this work, the memory resources refer to
the memory data. Using more memory data may enable the
model to have better retention. However, more memory data
also burden the training cost in CL.

Based on the inspiration, an allocation strategy for mem-
ory data is developed in the dynamic memory module to
make a trade-off between the performance and training cost:
Intuitively, compared with tasks in pretty different scenarios,

Fig. 3. Dynamic memory in D-GSM is inspired by synaptic theory in brain
science. Sufficient memory resources help agents to remember specific issues/
tasks. Restricted memory resources bring rapid forgetting.

tasks in past scenarios that are similar to the current one
are “easier” for models to remember since the learning-based
model updates parameters depending on the training data.
Therefore, to balance the effectiveness and efficiency of CL,
the dynamic memory in D-GSM allocates more memory data
for observed tasks that are “hard” to remember.

In detail, results of traffic divergence measuring is used to
enable the dynamic memory module to dynamically allocate
memory data from the scenario repository to the CL module.
Instead of allocating memory data to all previous tasks equally
as GEM [23], the dynamic memory of D-GSM allocates a
different number of memory data to different previous tasks.
The specific amounts of allocated data to a past scenario
depend on its traffic divergence to the current scenario. Firstly,
the traffic divergence measuring module uses memory data
stored in the scenario repository to calculate weighted-CKLD.
Then the maximum weighted-CKLD is selected:

CKLDwt
max = max

{
CKLDwt

c,r|r ∈ {1, . . . , c− 1}
}

(12)

where CKLDwt
c,r is the weighted-CKLD between the current

scenario and the r th past scenario. The traffic scenario cor-
responding to the maximum weighted-CKLD indicates the
largest divergence with the current scenario. Denote the max-
imum amounts of memory data for CL as Mcl(Mcl ≤ M).
Then, memory data with the most amounts mmax =

Mcl
c−1 is

allocated to this traffic scenario. Finally, memory data amounts
allocated to the r th scenario is calculated by:

mD
r = mmax

CKLDwt
c,r

CKLDwt
max

. (13)

Equation (13) presents the specific data allocation of dynamic
memory, which will be used to formulate the dynamic
memory-aware CL module of D-GSM in Section III-D.
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D. Dynamic Memory-Aware Continual Learning

The allocated memory data from the dynamic memory
module are used to apply the CL strategy in model training.
Inspired by GEM [23], the CL module in D-GSM firstly
defines loss functions for previous tasks, i.e., trajectory pre-
dictions in past scenarios. Then, inequality constraints are set
to interface the training process, where the model observes
the training data of the current scenario. Finally, with the help
of the Quadratic Program (QP) algorithm, proposed gradients
satisfying the inequality constraints are applied to update
parameters, which avoids the increment of losses on previous
tasks.

The loss functions for previous tasks are calculated using
memory data. Original GEM treats all previous tasks equally
without considering the similarity between tasks, which may
bring an unnecessary computational burden. As introduced in
Section III-C, instead of treating all tasks equally, D-GSM uses
dynamic memory data allocation to construct loss functions for
previous tasks:

l
(

fθ , mD
r
)
=

1
mD

r

mD
r∑

i=1

l ( fθ (Xi , r) , Yi ) (14)

where mD
r (r = 1, .., c − 1) is the allocated amounts of

samples described in (13). fθ is the vehicle trajectory pre-
diction model parameterized by θ , and (Xi , r, Yi ) is the
i th sample in the allocated memory data corresponding to
the r th (r = 1, .., c − 1) past scenario. Then, in the training
process of the current task, losses in (14) are used to define
inequality constraints to avoid the increment of losses on
previous tasks.

Supposing that (X, c, Y) are samples of the current task,
and f ′θ represents the prediction model state at the end of
learning of the last traffic scenario, the inequality constraints
are formulated as:

minimizeθ l ( fθ (X, c) , Y)

s.t. l
(

fθ , mD
r
)
≤ l

(
f ′θ , mD

r
)
, for all r < c. (15)

For an efficient implementation, this paper assumes that the
loss function is local linear (when learning rate is small), and
denotes loss gradients of the current and previous tasks as g
and gr , respectively. (15) can be rephrased into:

⟨g, gr ⟩ :=

〈
∂l ( fθ (X, c) , Y)

∂θ
,
∂l

(
fθ , mD

r
)

∂θ

〉
≥ 0,

for all r < c. (16)

If constraints (16) are satisfied, the proposed gradient g to
update parameters will not increase the loss of previous tasks.
Otherwise, the gradient g will be projected to the closest
gradient g̃ (in squared L2 norm) satisfying all constraints
in (16):

minimizeg̃
1
2

∥∥g− g̃
∥∥2

2

s.t.
〈
g̃, gr

〉
≥ 0, for all r < c. (17)

To solve (17) efficiently, a QP algorithm is used. The primal
of a QP with inequality constraints is described as:

minimizez
1
2

zTCz+ pTz

s.t. Qz ≥ b (18)

where C ∈ Rp×p, p ∈ Rp, Q ∈ R(c−1)×p and b ∈ Rc−1. The
dual problem of (18) is:

minimizeu,v

1
2

uTCu− bTv

s.t. QTv− Cu = p,

v ≥ 0. (19)

If (u∗, v∗) is a solution to (19), then there will be a solution
z∗ satisfying Cz∗ = Cu∗. Thus, the primal GEM QP to (16)
can be described as:

minimizez
1
2

zT z− gT z+
1
2

gT g

s.t. Gz ≥ 0, (20)

where G = −
[
g1, . . . , gc−1

]
and the constant term gT g is

discarded. (20) is a QP on p variables (the number of trainable
parameters of trajectory predictor). The dual of it is formulated
as:

minimizev
1
2

vTGGTv+ gTGTv

s.t. Gz ≥ 0. (21)

Once the dual problem (21) is solved for v∗, the projected
gradient update can be recovered as g̃ = GTv∗+g. According
to [23], adding a small constant γ ≥ 0 to v∗ biased the gra-
dient projection to updates that favored beneficial backwards
transfer in practice. Fig. 2 shows the complete process of D-
GSM. Fig. 4 also shows the mechanism of D-GSM to realize
continual learning. Compared with not-CL methods, D-GSM
applies the memory-aware continual learning strategy to avoid
the loss on previous tasks during the current updating.

The entire algorithm of D-GSM is summarized in
Algorithm 1. To clearly explain the input and output in each
step, symbols in including frepo for repository updating, fdiv
for divergence measuring, falloc for dynamic memory module,
fcl for CL training strategy and lprev , lcur for previous and
current losses are newly used in Algorithm 1.

IV. EXPERIMENTS

To investigate CL problems formulated in Section II and
evaluate the proposed approach introduced in Section III, three
experiments using datasets representing different scenarios are
conducted. As shown in Fig. 5, the first experiment explores
the relationship of catastrophic forgetting and task similarity
of trajectory prediction in continuous scenarios. The second
experiment investigates the influence of memory resource on
the CL performance. The comparison between non-CL models
and models applied with the proposed CL approach is demon-
strated in the third experiment, evaluating the performance of
D-GSM in continuous scenarios. This section firstly introduces
used datasets and experimental settings. Then, experimental
results with analysis are presented.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on May 28,2025 at 10:39:53 UTC from IEEE Xplore.  Restrictions apply. 



2362 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 3, MARCH 2024

Fig. 4. The mechanism of D-GSM to realize continual learning in continuous
scenarios. Compared with non-CL methods, dynamic memory-aware continual
learning strategy of D-GSM constrains the increment of loss on previous tasks,
which alleviates catastrophic forgetting.

Fig. 5. The logic of three experiments in this paper. The experiment I explores
the relationship between catastrophic forgetting and traffic divergence. After
exploring the reasons for forgetting, the experiment II investigates the memory
capability of the proposed CL approach using different amounts of memory
data. The proposed D-GSM utilizes measurements of traffic divergence to
dynamically allocate memory data. Experiment III compares the performance
of D-GSM with several baselines.

A. Datasets and Implementations

Since this study focuses on CL tasks for interactive behavior
learning, typical interactive scenarios, including merging sce-
narios in highways, intersections, and roundabout scenarios in
urban areas, are selected as examples to evaluate the proposed

Algorithm 1 Dynamic Gradient Scenario Memory (D-GSM)
for Vehicle Trajectory Prediction in Continuous Scenarios
Inputs: Data of continuous scenarios S = {d1,. . . , dc, . . . ,

dn}; memory limit M , Mcl ; functions frepo, fdiv , falloc,
fcl ; loss lprev , lcur ; model fθ .

Outputs: Prediction of the r th scenario Pr (Y|X) ∼ 0 in (3),
for r=1:c.

1: for current scenario c = 1 to n do
2: for i = 1 to c do
3: Memory data d ′i ← frepo(di , mi ). ▷ Scenario repos-

itory updating. Amount mi = M/c.
4: if c > 1 then
5: for r = 1 to c − 1 do
6: CKLDwt

c,r ← fdiv(d ′c, d ′r ) ▷ Traffic divergence
measuring in (6)-(11).

7: Calculate CKLDwt
max as (12).

8: mD
r ← falloc(CKLDwt

max, Mcl, CKLDwt
c,r). ▷

Dynamic memory allocating as (13).
9: lprev ← l( fθ , mD

r ) ▷ Previous loss in (14).
10: θ ← fcl(lprev, lcur ) ▷ CL strategy in (15)-(21).
11: end for
12: else
13: Model training in a single scenario (c==1).
14: end if
15: Evaluate fθ with the testing set of di .
16: end for
17: end for

approach. Specifically, experiments are conducted based on
INTERACTION dataset [33]. INTERACTION is a widely
used natural driving dataset that collects real traffic data from
different locations to represent divergent scenarios [33], [34].
For convenience, these scenarios are denoted with different
notations, as shown in Fig. 6.

These scenarios are divergent from many aspects such
as road geometry, traffic participants, traffic rules, driving
behaviors of vehicles, etc. Fig.7 also demonstrates the com-
parison of the distribution of the minimum time-to-conflict-
point(△T T C Pmin). △T T C Pmin represents the density of
interactive behaviors among these scenarios [33]. As shown
in Fig. 7, it can be found that selected five scenarios have
different density of interactive behaviors. More details on
the definition of △T T C Pmin are provided in Appendix C.
Besides, Fig.8 shows the comparison of joint distributions of
vehicle velocity and acceleration between different scenarios.
These qualitative and statistical descriptions of the data used
in experiment demonstrate the divergent between scenarios.
According to these evidences, it is assumed that the datasets
can be non-i.i.d. Furthermore, to rigorously quantify the diver-
gence of scenarios, as described in Section III-B, this paper
mainly focuses on the different spatiotemporal dependencies
among vehicles between scenarios. And the weighted-CKLD
is proposed to measure the divergence of distribution in the
aspect of spatiotemporal dependencies between these non-i.i.d
datasets which represent divergent scenarios.

In data processing, extracted features include IDs and coor-
dinates of vehicles with timestamps. Then, trajectories samples
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Fig. 6. Intuitive visual aids for scenarios: Various interactive driving scenarios are used in experiments based on INTERACTION datasets. The first two
letters (“DR”) of names represent that the data are collected by drones. The following three letters represent the corresponding country (“USA” is for the
U.S.A., and “CHN” is for China). The last two letters are scenario codes to distinguish different locations [33]. d1 is a busy all-way-stop intersection with lanes
controlled by stop signs. d2 is demonstrated by Fig.6 (b), which is a busy 7-way roundabout with one “yield” branch and six “stop” branches. As Fig.6 (e)
shows, d3 is collected on a highway that contains several sub-scenarios. The upper two lanes are zipper merging, and it is a ramp for the middle two lanes.
Moreover, it is a forced merging for the lower three lanes where vehicles must change lanes. Fig.6 (c) and (d) show the d5 and d4, which are roundabouts
controlled by stop signs and yield signs, respectively.

Fig. 7. Comparisons for distributions of the minimum time-to-conflict-point
among selected scenarios. The x-axis represents the length of minimum
time-to-conflict-point (△T T C Pmin ) in seconds. And the y-axis are the per-
centage of vehicles that with particular △T T C Pmin relative to total number
of vehicles in the dataset. The higher values of y-axis represent larger density
of interactive behaviors [33]. Detailed definition of minimum time-to-conflict
is described in Appendix C.

are processed for vehicle trajectory prediction and traffic diver-
gence measuring, respectively, as described in Section II-A
and Section III-B. In detail, the closest 5 surrounding vehicles
are considered (N = 5) in the conditional XN

cond for measure-
ments of the traffic divergence. Furthermore, the number of
eigenvector k in (6) is set as 3. It should be noted that only
vehicles are considered in the experiments since this work
focuses on modeling the interactive behaviors of vehicles, and
other types of traffic participants, including pedestrians and
cyclists, take a small proportion of the total dataset, as shown
in Table I. Besides, according to [33], the data are smoothed by
a Rauch-Tung-Striebel (RTS) smoother [35] to obtain smooth
motions of the vehicles. To investigate the impacts of using
the smoothed data, an experiment is conducted using data with
noise, which is demonstrated in Appendix A. The training
strategy of continual trajectory prediction is that the learned
model is loaded to be trained on new datasets without directly

Fig. 8. Joint distributions of vehicle velocity and acceleration of different
scenarios: (a) scenario d1. (b) scenario d2. (c) scenario d3. (d) scenario d4.

TABLE I
INFORMATION OF SCENARIOS USED IN EXPERIMENTS

accessing old data from past scenarios when a new scenario
comes. Approximate 10,000 data samples are used from each
scenario. The selected dataset corresponding to each scenario
is split into training, validation, and testing datasets by 7:1:2.
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TABLE II
IMPLEMENTED KEY PARAMETERS

The proposed approach is appropriate for interaction-aware
models using gradient descent-based methods for updating
parameters. In this work, the Social-STGCNN model [36],
a graph-based interaction-aware trajectory predictor, is adopted
as the base model. In Social-STGCNN, interactions between
vehicles are represented by a graph where nodes represent
the positions of vehicles, and edges with a weighted matrix
encode the spatial interdependency between vehicles. Then,
graph representations are inputted into the spatiotemporal
graph convolutional neural networks (ST-GCNN). Based on
the operation of ST-GCNN, a time-extrapolator convolutional
neural network (TXP-CNN) outputs the predicted distribution
of trajectories as (3).

The model observes 2s historical trajectories and predicts
trajectories for 4s. They are trained for 250 epochs using
Stochastic Gradient Descent (SGD), and the learning rate is
set as 0.001. Detailed implementation of models are shown
in Table II. The training loss function is the negative log-
likelihood:

l (θ) = −
∑

log
(

P
(

Y|0̂
))

(22)

where 0̂ is the estimated Gaussian distribution over future
trajectories Y. Models are implemented using PyTorch.1

The metrics for prediction accuracy are Average Displace-
ment Errors (ADE) and Final Displacement Errors (FDE),
commonly used in trajectory predictions [9], [12], [36]. Sup-
pose each test set has Nts samples, the i th sample of predicted
co-ordinates of target vehicle and the ground truth at time t
are denoted as t̂r(t)

0,i and tr(t)
0,i . ADE represents the average

Euclidean distance for the whole predicted trajectory:

ADE =

∑Nts
i=1

∑t+t f
t ′=t+1

∥∥∥t̂r(t ′)
0,i − tr(t ′)

0,i

∥∥∥
2

Nts × t f
. (23)

FDE represents the Euclidean distance for the final predicted
position:

F DE =

∑Nts
i=1

∥∥∥t̂r(t+t f )

0,i − tr(t+t f )

0,i

∥∥∥
2

Nts
. (24)

B. Experimental Settings
This work mainly investigates the catastrophic forgetting of

vehicle trajectory prediction in continuous scenarios. Instead
of treating all previous tasks equally as GEM, the proposed

1https://pytorch.org

D-GSM uses dynamic memory for CL. Dynamic memory
allocates more memory resources, i.e., the memory data for
tasks that are easier to be forgotten to balance the effectiveness
and efficiency. D-GSM judges different tasks by measuring
traffic divergence between the current task and the previous
ones. To validate the rationality of dynamic memory and
evaluate the performance of D-GSM, three experiments are
conducted based on INTERACTION dataset. Experiments I
and II investigate key factors of predictions in continuous
scenarios and also validate the rationality of our design
of dynamic memory. Experiment III evaluates the proposed
approach. Fig. 5 demonstrates the logic of experiments in this
work. It should also be noted that the constructed continuous
scenarios are devised to evaluate the trajectory prediction
model in the changing driving environments as AVs drive
in the real world. The shift between different scenarios is
simplified as switching different datasets for model training
in experiments. This simplification enriches testing situations
and enhances the effectiveness of the evaluation.

In detail, experiment I explores the relationship between
catastrophic forgetting and traffic divergence. Base models
are firstly trained with continuous scenarios consisting of
two scenarios. After learning the second scenario, the model
is tested with the firstly learned one. Compared to the test
after learning the first scenario, the increment of prediction
errors reflects the catastrophic forgetting. Then, the traf-
fic divergence between different scenarios is presented by
the weighted-CKLD. Finally, the relationship between catas-
trophic forgetting and traffic divergence is analyzed.

After investigating influencing factors of forgetting in exper-
iment I, experiment II explores the retention of the proposed
approach from the aspect of memory resources. The per-
formance of the proposed approach with different memory
data is compared. Models with the proposed CL approach
are trained and tested in continuous scenarios. To make a
clear comparison between different memory usage, models
allocate 100, 500, and 1,000 samples of memory data for each
previous task in the CL strategy without using the dynamic
memory. The average performance over continuous scenarios
is compared.

Experiment III aims at evaluating the performance of the
proposed approach. Since the dynamic memory allocating is
expected to be compared to the model with equal memory allo-
cating, three groups of continuous scenarios are set, including
Sthree = {d1, d2, d3}, S f our = {d1, d2, d3, d4}, and S f ive =

{d1, d2, d3, d4, d5}. Each group of continuous scenarios has
more than two scenarios (In continuous scenarios with only
two scenarios, the memory allocation of D-GSM is the same
as GSM.) The model settings are:

• Vanilla: The base model (Social-STGCNN) without
applying continual learning approach.

• GSM (ours): The base model applied with the proposed
approach but without dynamic memory. The memory
usage for all past scenarios are equally set as mmax =

Mcl/ (c − 1). In this experiment, Mcl are 3,500 samples.
• D-GSM (ours): The base model applied with the entire

proposed approach. The memory usage for the r th past
scenario is described in (13), Mcl are also set as 3,500
samples.
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Fig. 9. Catastrophic forgetting compared with the measurement of traffic divergence.

• Joint-Training: Vanilla base model with joint training.
It is a non-continual learning setting that does not follow
the storage limitation assumptions of continual learning.
Data from all scenarios are available at once. Models are
trained with mixed data from all scenarios.

In addition to the experiments described above, a group of
supplementary experiments are conducted to investigate the
affects of the scenario definition, presented in Appendix B.

C. Experimental Results and Analysis
1) Experiment I: In the first experiment, models are tested

on the past scenarios that have been observed. Experimental
results of the first experiment are shown in Fig. 9. Taking
the first row in Fig. 9 for example, (a) and (b) are ADE and
FDE tested on scenario d1 after observing the last scenario
in continuous scenarios S1 = {d1, d4}, S2 = {d1, d2}, and
S3 = {d1, d3}. The blue bars in (a) and (b) are baselines
showing the testing performance of the model trained on d1.

(c) shows the weighted-CKLD between new scenarios and the
first learned scenario d1. It can be found that, compared to
baselines, ADE and FDE increase in all settings after learning
the new scenario. The increased prediction errors reveal the
catastrophic forgetting of trajectory predictions in continuous
scenarios. The highest increment of ADE and FDE occurs in
the setting S3 = {d1, d3}. After learning scenario d3, ADE and
FDE increase by 112% and 105%. Compared to measurements
of the traffic divergence represented by weighted-CKLD in
(c), it can be found that the largest weighted-CKLD also
corresponds to the setting S3 = {d1, d3}.

The results are similar in the second rows (d)-(f) and third
rows (g)-(i). These results are explainable intuitively. First,
d3 is a merging type scenario from a highway in China, while
d1, d2, and d4 are scenarios belonging to urban areas in the
USA. Thus, d3 can be regarded as a divergent scenario to
others. As expected, the highest weighted-CKLDs are results
between d3 and other scenarios in all groups of Experiment I.
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Fig. 10. Trajectory predictions in continuous scenarios: The orange cross markers with dash lines represent the predicting performance vanilla social-STGCNN
model (base model). The red triangle markers with dash lines represent the performance of base model with joint-training, which has fully access to all traffic
data. And the solid lines are proposed continual learning method, where the green one represents the GSM (ours) and the purple one represents the D-GSM
(ours).

TABLE III
AVERAGE PREDICTING ADE(M)/ FDE(M) IN CONTINUOUS
SCENARIOS WITH DIFFERENT NUMBER OF MEMORY DATA

Moreover, compared with errors and weighted-CKLD, exper-
imental results indicate that larger traffic divergence brings
higher error increments.

2) Experiment II: The second experiment compares the pro-
posed CL approach using different memory data for continual
learning. Table III shows the average ADE and FDE in three
groups of continuous scenarios. The baseline is the vanilla
base model which does not use memory data (0 memory
data per task) and has the highest average errors (both ADE
and FDE) in three tested groups. The model using the most
memory data in this experiment has the lowest errors among
the three groups of continuous scenarios. It can also be
found that in each group, with the increment of memory data
allocated to calculate the losses of past scenarios, the average
errors decline. These results indicate that using more memory
data for losses (14) may improve the predicting performance
in continuous scenarios. However, using more memory data
brings higher training costs. The third experiment will discuss
more on the cost, where the training cost of two proposed
model settings is compared.

3) Experiment III: The third experiment evaluates the
performance of the proposed approach. First, models are
continually trained in continuous scenarios. Then models are
tested with all scenarios that have learned. This experiment
includes three groups of continuous scenarios.Table IV shows
detailed results. Compared to vanilla base model, the pro-
posed GSM and D-GSM models have lower ADE and FDE
among three groups of continuous scenarios. Besides, joint-
training settings are regarded as the best possible performance
in continual learning [25], [26] since all training data are
accessible at once in joint training. Joint-training model has
the best performance in the continuous scenarios S f ive =

{d1, d2, d3, d4, d5}. However, we also found that in another two
groups of continuous scenarios, joint-training models are not
the best. The proposed models outperform the joint-training in
Sthree = {d1, d2, d3} and S f our = {d1, d2, d3, d4}. Here, take
results in Sthree as example to briefly discuss this “unexpected”
phenomenon: It may owe to the memory mechanism of the
proposed approach and the selected scenarios. In Sthree, d3
is a highway merging scenario collected in China, while
other scenarios are from urban environments in the USA. d3
has a larger divergence relative to others. The total number
of scenarios is 3, which means that the data of d3 has
one-third of the training data for joint-training. Besides, the
joint-training just mixed all data together to train the model.
Due to the divergence, data from d1 and d2 may “weaken”
the performance on d3. Meanwhile, data from d3 interrupt
the performance on d1 and d2. However, since the proposed
approach purely uses memory data to constrain the loss
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TABLE IV
VEHICLE TRAJECTORY PREDICTING PERFORMANCE (ADE / FDE) IN CONTINUOUS SCENARIOS

TABLE V
CALCULATED CKLDS BETWEEN DIFFERENT SCENARIOS

increment on past scenarios, it performs well both in the
current and past scenarios.

When the number of scenarios increases as in S f ive, on the
one hand, highly divergent scenario d3 has a lower weight in
the whole continuous scenarios. On the other hand, decreasing
memory data may reduce the advantage of the proposed
methods. As a result, in S f ive, joint-training has the best
performance. In summary, these interesting results indicate
that the advantage and limitations of the proposed approach
are relative to the memory room and the scenario data. There
can be some ablative studies to explore more characteristics
of the proposed approach in future works.

The ADE and FDE are also detailed in Table IV. Besides,
CKLDs utilized to calculate weighted-CKLDs for D-GSM
are shown in Table V. These experimental results show that
the proposed approach improves the performance of vehicle
trajectory prediction in continuous scenarios. The catastrophic
forgetting of base models is alleviated.

Moreover, the proposed D-GSM aims to improve training
efficiency by allocating different memory data to diverse pre-
vious tasks. In Fig. 10, the green dot markers with solid lines
represent the proposed approach without dynamic memory
(GSM). The purple dot markers with solid lines represent
the proposed D-GSM. Yellow cross markers and red triangle
markers with dash lines represent vanilla base model without
continual learning strategy and base model with joint-training.
Comparisons of training time and the data usage are also
demonstrated in Fig. 10. Since training time depends on the

scale of data and number of epochs, the last column of Fig. 10
shows the proportional relationships of training time and data
usage for two settings. The green bars in Fig. 10 represent
the cost of GSM, and the purple bars represent the D-GSM.
(c) show the comparisons in continuous scenarios S f our , and
(f) shows the comparisons in S f ive. The average training
time per epoch of GSM is set as 1, which corresponds to
approximate 900s. Similarly, for a clear comparison, usage
of memory data for GSM is also set as 1, corresponding to
3,500 samples. It is easy to understand that the ratio of time
cost is close to the ratio of memory data usage since more
data bring more computations. In three groups of continuous
scenarios, the time cost and data cost of D-GSM are lower than
GSM. The costs are approximate 0.4 to 0.5 times in S f our and
S f ive. It can be found that D-GSM models have a lower time
cost without reducing much accuracy.

V. CONCLUSION

This paper proposes a novel continual learning approach
termed D-GSM for interactive behavior learning of AVs.
D-GSM constrains the loss increment on old tasks when
learning a new task. With the help of memory data, the
updating strategy for trainable parameters considers both data
from the current and previous scenarios at each optimizing
step. Therefore, compared to the non-CL approaches, which
only focus on learning the current task, the proposed approach
mitigates the catastrophic forgetting of interactive behavior
learning in continuous scenarios without re-training. Moreover,
a novel metric named weighted-CKLD is proposed to measure
the traffic divergence between interactive scenarios. By utiliz-
ing the measurement of traffic divergent, a dynamic memory
for the proposed CL approach is developed to improve the
training efficiency. Based on various scenarios datasets from
INTERACTION dataset [33], experiments are conducted to
evaluate the proposed approach. Experimental results show
that D-GSM outperforms non-CL models in continuous sce-
narios. Meanwhile, the developed dynamic memory improves
the training efficiency by using less memory data.
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TABLE VI
PERFORMANCE (ADE / FDE) IN CONTINUOUS
SCENARIOS (TRAINING WITH NOISE DATA)

The proposed approach strengthens the practicability of
AVs, which is beneficial to improve the road safety and traffic
efficiency of ITS. Besides, investigations on the uncertainty in
traffic or explorations for different factors of traffic divergence
may be the potential research area of continual interactive
behavior learning for ITS.

APPENDIX A
EXPERIMENTS WITH NOISE DATA

One of the simplifications in the experiments described in
Section IV is that the training data are smoothed to obtain
smooth motions of the vehicles. Compared to the smoothed
data, the raw data collected in the real world are noisier.
An experiment based on data with Gaussian noise is conducted
to investigate the impacts of this simplification. In detail,
first, the noise data are randomly sampled from a Gaussian
distribution with a 0.1 standard deviation. Then, the sampled
noise is added to all the training data. Based on the training
data with Gaussian noise, the performance of the vanilla
Social-STGCNN model (baseline) and the proposed D-GSM
model are tested in continuous scenarios. The models are
tested in each scenario that has been learned after continually
learning in the continuous scenarios.

The experimental results are shown in Table VI. It can
be found that, among three groups of continuous scenarios
(Sthree, S f our , and S f ive), the proposed D-GSM have lower
ADE and FDE in most cases, which alleviates the catastrophic
forgetting of the vanilla model, as the experiments using
the smoothed data demonstrated in Section IV. However,
compared to the Table IV, the absolute values of ADE and
FDE in Table VI are higher. These results indicate that the
data with noise may reduce the prediction accuracy, while the
proposed model still achieves the goal of continual learning.

APPENDIX B
EXPERIMENTS WITH A DIFFERENT

DEFINITION OF SCENARIOS

The definition of the scenario is critical for the continual
learning tasks of trajectory prediction. To explore whether the

Fig. 11. The maps of additional datasets used in the supplementary
experiments.

current definition of the scenario affects the performance of the
proposed approach, experiments with newly defined scenarios
are conducted to evaluate the models comprehensively.

A. New Definition Of Scenarios
The current definition of “scenario” is introduced in

Section II and Section IV. In detail, different scenarios are
represented by specific datasets collected from divergent loca-
tions, where the labels of datasets are used to distinguish
scenarios. Even though two datasets collected from the same
type of traffic environment but from different regions are
regarded as two distinct “scenarios.” For example, datasets
d2 and d4 are collected from two urban roundabouts, which
are considered as two scenarios.

In contrast to the current definition, a new definition is more
macroscopic, where the same type of traffic environment is
regarded as a scenario. For example, according to the new
definition, the datasets d2 and d4 can be classified into the same
scenario since they are collected from urban roundabouts.
Specifically, three different scenarios, including 1) Urban
Intersection, 2) Urban Roundabout, and 3) Ramp Merging,
are defined in the supplementary experiments.

B. Experimental Settings
Additional datasets from INTERACTION datasets [33]

are used to construct the continuous scenarios based on
the new definition. As shown in Fig. 11, a dataset
named “DR_DEU_Merging_MT” collected from a merg-
ing environment in Germany, and a dataset named
“DR_USA_Intersection_GL” collected from an urban inter-
section in the U.S.A, are adopted in the supplementary
experiments.

Referring to Section IV-A, newly defined scenarios are
constructed by combining different datasets. In detail, the
dataset d1 (“DR_USA_Intersection_MA”) is combined
with the “DR_USA_Intersection_GL” to represent the
Urban Intersection scenario. Datasets collected in
roundabouts including d2 (“DR_USA_Roundabout_FT”)
and d4(“DR_USA_Roundabout_EP”) are mixed to
represent Urban Roundabout scenario. Moreover, since

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on May 28,2025 at 10:39:53 UTC from IEEE Xplore.  Restrictions apply. 



LIN et al.: CONTINUAL INTERACTIVE BEHAVIOR LEARNING WITH TRAFFIC DIVERGENCE MEASUREMENT 2369

TABLE VII
PERFORMANCE (ADE / FDE) IN CONTINUOUS

SCENARIOS (NEW SCENARIO DEFINITION)

the dataset d3 (“DR_CHN_Merging_ZS”) and the
“DR_DEU_Merging_MT” are collected in merging region
and sharing the similar “zipper” rule [33], they are combined
to represent Ramp Merging scenario.

Furthermore, two groups of continuous scenarios including
SI I = {Urban Intersection, Urban Roundabout}, and SI I I =

{Urban Intersection, Urban Roundabout, Ramp Merging } are
devised for the evaluation of the proposed approach. Note
that the total numbers of training samples are consistent with
the experiments demonstrated in Section IV. The ratio of
combined datasets in each newly defined scenario is approx-
imately 1:1. The baseline model (vanilla) and the proposed
models (GSM and D-GSM) are continually trained in SI I and
SI I I , and tested in each learned scenario.

C. Experimental Results and Analysis

The performance of the proposed approach is evaluated
in continuous scenarios under the new scenario definition.
As shown in Table VII, the prediction accuracy of the base
model (vanilla) and the models applied with the proposed
approach (GSM and D-GSM) are compared in newly defined
continuous scenarios. In continuous scenarios SI I ,2 ADE and
FDE of the proposed GSM are lower than the base model
among all tests. Similarly, in SI I I , GSM and D-GSM outper-
form the base model. These experimental results show that the
proposed approach achieves the primary goal of alleviating
catastrophic forgetting in continuous scenarios in the new
scenario definition.

Moreover, Fig. 12 demonstrates the FDE and the learning
cost of D-GSM and GSM in SI I I . As introduced in Section III,
D-GSM dynamically allocates memory data based on the mea-
surement of past scenarios. In this experiment, the divergence
between the constructed new scenarios is measured using the
proposed weighted CKLD. Then, D-GSM applies its dynamic
memory allocation strategy to improve learning efficiency
using fewer data based on the divergence measurement. The
experimental results show that the proposed D-GSM achieves
the best performance with less training time and data usage
than GSM.

In summary, compared to the experimental results demon-
strated in Section IV, the different scenario definitions may
affect the absolute values of prediction errors. However, the
new definition in the supplementary experiments brings little

2The D-GSM allocates different memory resources in different past sce-
narios. Since there is only one past scenario (i.e., Intersection) in SI I , the CL
strategies of GSM and D-GSM are the same in this case.

Fig. 12. The performance of the proposed model in newly defined continuous
scenarios.

effect on the main characteristics of the proposed approach,
including the ability of CL in continuous scenarios and the
advantages of the dynamic memory allocation strategy.

APPENDIX C
DEFINITION OF MINIMUM TIME-TO-CONFLICT-POINT

Referring to [33], the density of interactive behaviors of
a scenario can be represented by minimum time-to-conflict-
point (△T T C Pmin). △T T C Pmin is a metric to describe the
relative states between two moving vehicles in a scenario,
where the paths of the two vehicles share a conflict point
but without any forced stop. More details about the concept
of the conflict points can be found in [33]. Assuming that
T T C P t

i = △l t
i /v

t
i (i = 1, 2) is the traveling time to the conflict

point of each vehicle in the interactive pairs [37]. vt
i and △l t

i
are, respectively, the speed of the i th vehicle and its distance to
the conflict point along the path at time t . Then, △T T C Pmin
is defined as:

△T T C Pmin = min
t∈[Tstart ,Tend ]

(
T T C P t

1 − T T C P t
2
)

(A.1)

where Tstart and Tend are, respectively, the starting time
index when both vehicles appear and the crossing time
index when one of the vehicles passes the conflict point.
If △T T C Pmin ≤3s, then it is defined that interaction
exists [33], [37].

APPENDIX D
BASIC REQUIREMENT FOR CALCULATIONS OF

CONDITIONAL KULLBACK-LEIBLER DIVERGENCE

As introduced in Section III-B, difference of spatiotemporal
dependency among vehicles are used to represent divergence
between interactive scenarios. In the implementation, the
spatiotemporal dependency is formulated as the conditional
probability density function (CPDF) over historical and future
trajectories of vehicles, and CKLD presented in (5) is used to
measure the distance between two CPDFs. Referring to (5), p1
and p2 are assumed as GMMs, which are firstly estimated by
MDN [30]. Then, Monte-Carlo sampling is applied to calculate
the original KLD between estimated GMMs. Finally, CKLD
is calculated based on KLD, as formulated in (10).

The calculation described above takes memory data
stored in the scenario repository as inputs. According to
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TABLE VIII
TRAINING LOSS OF GAUSSIAN MIXTURE MODELS (GMMS) ESTIMATION

Section III-A, memory storage space is not infinite. The
memory data for each observed scenario decreases when a
new scenario comes. However, insufficient data may lead to
errors during the calculation of CKLD. To discuss this problem
seriously, the components of GMMs, the data amount for the
CKLD calculation, and the reliability of the calculated CKLD
are investigated in the supplementary experiments.

A. The Assumption of GMMs

The distributions of the scenario data are assumed as Gaus-
sian Mixture Models (GMMs) in this work. In detail, GMMs
are mixed by Gaussian distributions with different parameters.
The component number of Gaussian distributions in GMMs is
a hyperparameter. A simple assumption of GMMs with fewer
Gaussian distributions may ease the computational burden of
GMMs estimation. However, the simple assumption may also
be a lack of capability to estimate a GMM precisely.

In the supplementary experiments, the training losses of
MDN to estimate GMMs with different assumptions are
recorded and compared. The MDN to estimate GMMs is
trained with 1,000 epochs. The training process of MDE
is to minimize the loss function, i.e., the negative log-
likelihood [30]. Table VIII demonstrates the loss of the final
epoch in different GMM assumptions with 6,000 cases of
training data. In the simplest assumption, the GMMs are
assumed to contain only one Gaussian distribution. The max-
imum component number of GMMs is 20, as in our works
introduced in Section IV. From the comparison, it can be
found that the loss reduces with the increase in the component
number of GMMs. The lower loss indicates a more precise
estimation of data distribution. Based on the experimental
results, 10 or more Gaussian distribution components in
GMMs are suggested in this study.

B. Basic Requirement for CKLD Calculation

There are two forms of errors when calculating CKLD
by insufficient data: 1) The amount of data is too small to
calculate values of CKLD. 2) The calculated CKLD may not
be precise. Considering these potential errors, the requirement
of obtaining values of CKLD, which are reliable to guide
the dynamic allocation strategy in the proposed CL approach,
is investigated in the supplementary experiments.

1) Data Amount and Process: All scenarios have the same
amount of data for the calculation of CKLDs. Processed
cases are 60,000 in total. It should be noted that data
process refers to the condition XN

cond and Y described in

Fig. 13. The conditional Kullback-Leibler divergence (CKLD) between
scenario d3 and di (i = 1, 2, 5) are calculated using different data amounts.
The maximum number of processed cases for this experiment is 60,000, which
is denoted as 100% data usage.

Section III-B, which differs from the processing of trajec-
tories for prediction in this work. Besides, the dimensions
of condition XN

cond for CKLD calculation are different from
the processed trajectories to be predicted. The exact amount
of raw data can be processed into different cases for CKLD
and trajectory to predict, respectively. Thus, we use “cases” to
distinguish “samples,” which are used in the paper to represent
the processed trajectories for prediction.

2) Experimental Settings: The supplementary experiments
are devised to find 1) the floor of data amount to calculate
CKLD and 2) the thresholds of the data amount to obtain
relatively reliable CKLD under different GMM assumptions.
Based on the discussions in Appendix D-A, three groups of
assumptions representing different complexities, including a
GMM containing 5, 10, and 20 Gaussian distributions, are
discussed. Under these assumptions, CKLD values among
d1 to d5 scenarios are calculated in pairs using various amounts
of data. Considering the limited length of the article, only the
main experimental results are demonstrated in the following.

3) Experimental Results and Analysis: As shown in Fig. 13,
CKLDs (the y-axis) between scenarios di (1, 2, 5) and d3,
calculated by different data amount (the x-axis) under assump-
tions including GMM with 5 (Fig. 13 (a)), 10 (Fig. 13 (b)),
and 20 (Fig. 13 (c)) Gaussian distributions are compared. Note
that the scale of the y-axis in Fig. 13 (a) is much higher
than (b) and (c). The actual fluctuation of the CKLD curve in
Fig. 13 (a) is drastic, indicating the unsteadiness of the results.
This phenomenon may be due to the imprecise estimation of
GMMs, as discussed in Section D-A. The following analysis

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on May 28,2025 at 10:39:53 UTC from IEEE Xplore.  Restrictions apply. 



LIN et al.: CONTINUAL INTERACTIVE BEHAVIOR LEARNING WITH TRAFFIC DIVERGENCE MEASUREMENT 2371

TABLE IX
BASIC REQUIREMENT OF DATA AMOUNT FOR CKLD CALCULATIONS

TABLE X
D-GSM PERFORMANCE (ADE / FDE) WITH DIFFERENT SCENARIO
DIVERGENCE MEASUREMENTS IN CONTINUOUS SCENARIOS Sthree

will focus on the experimental results of GMMs with 10 and
20 Gaussian distributions to obtain an insightful conclusion
for the practical application.

From the experimental results demonstrated in
Fig. 13 (b) and (c), it can be found that the CKLD
results are relatively stable using data more than 20%
(12,000 processed cases) for the GMM with 10 Gaussian
distributions and using data more than 30% (18,000 processed
cases) for GMM with 20 Gaussian distributions. These
thresholds are recommended as a reference when devising
the CL memory system applied to the proposed method.
Furthermore, we decline the data amount gradually during the
experiment to find the floor, i.e., the lower bound, of CKLD
calculability. When the declined data amount is less than
the “floor,” null values appear. In other words, the data less
than the “floor” are insufficient to estimate the GMMs, and
the CKLD cannot be obtained. The experimental results are
summarized in Table IX. The floor of calculability for GMM
with 10 Gaussian distributions is 3,500 and 6,000 for the
GMM with 20 Gaussian distributions.

C. Discussion on the Reliability of Calculated CKLD
In the supplementary experiment, the relatively steady

results are regarded as reliable results. Since using GMM
with 20 Gaussian distribution is the most practical assump-
tion in this work, the experimental results of this group are
highlighted for more discussions. Note that the CKLD values
increase at 70% and 90%. Are these increased values can be
trusted to apply to the proposed CL approach? To answer
this question, we applied these CKLD results to the proposed
D-GSM. Table X shows the CL performance of D-GSM mod-
els guided by different CKLD-based measurements, including
CKLDs calculated by 70%, 90%, and 100% amount of data.
The experimental results show that the prediction accuracy and
the training cost are very close in these three groups, which
indicate that the increased CKLDs have little impacts on the
performance of the proposed CL approach.

In summary, the floor of calculability and the threshold
to obtain relatively stable results are provided as the basic
requirements of CKLD calculations. However, since the pro-
posed traffic divergence measurement is a learning-based

numerical method, the specific requirement in different prob-
lems may be affected by the data used with specific data
processes. We hope the conclusions in the supplementary
experiments can provide a reference in related research areas,
and welcome researchers to explore further in the traffic
divergence measurement studies.
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