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Personalized Driver Braking Behavior
Modeling in the Car-Following Scenario: An

Importance-Weight-Based Transfer
Learning Approach
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Abstract—Accurately recognizing braking intensity lev-
els (BIL) of drivers is important for guaranteeing the safety
and avoiding traffic accidents in intelligent transportation
systems. In this article, an instance-level transfer learning
framework is proposed to recognize BIL for a new driver
with insufficient driving data by combining the Gaussian
mixture model (GMM) and the importance-weighted least-
squares probabilistic classifier (IWLSPC). By considering
the statistic distribution, GMM is applied to cluster the data
of braking behaviors into three levels with different inten-
sities. With the density ratio calculated by unconstrained
least-squares importance fitting, the least-squares prob-
abilistic classifier is modified as IWLSPC to transfer the
knowledge from one driver to another and recognize BIL for
a new driver with insufficient driving data. Comparative ex-
periments with nontransfer methods indicate that the pro-
posed framework obtains a higher accuracy in recognizing
BIL in the car-following scenario, especially when sufficient
data are not available.

Index Terms—Braking intensity level (BIL), density ra-
tio estimation, driver model, importance-weighted cross-
validation (IWCV), transfer learning (TL).

I. INTRODUCTION

HOW to explicitly and accurately recognize driver’s behav-
iors and intentions during the driving process has been the

focus of many studies related to the safety of advanced driver
assistance systems (ADAS), automated driving systems, and
intelligent transportation systems (ITS) [1]. Recognized results
can help to improve the performance of the aforementioned
systems and enhance the traffic efficiency, driving safety, and
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fuel economy [2]. Due to the close relation with driving safety,
drivers’ braking behaviors have been considered as one of the
most important driving behaviors in recent studies [3].

Researchers using both model-based and data-driven ap-
proaches contributed a lot to the modeling of braking behaviors,
recognition of braking style, identification of braking intensity
levels (BIL), and prediction of braking pedal operations. Model-
based methods mainly focus on formulating braking behaviors
by control theory and parametric approaches. In [4], the speed
reduction time was used to describe the braking behavior of
drivers. Considering the urban scenario with crossing pedestri-
ans, a parametric model was used to model the drivers’ braking
behavior. In [5], based on the theory of optimal control, a layered
control system was developed to model stopping behaviors
(deceleration and braking) by carrying out both action priming
and action selection. A new braking system considering the
driver’s braking intentions and the working characteristics of
the motor was proposed in [6], which modeled the relationship
between drivers’ braking intention and torque to maximize
the performance of model-predictive-control-based braking
systems.

With the recent development of data science, data-driven
methods using machine learning provide a promising way
to recognize and predict drivers’ behaviors [7]–[10]. For in-
stance, using naturalistic driving data, a Gaussian mixture model
(GMM)–hidden Markov model (HMM) method was used in
[7] to learn and infer the driver’s braking behavior in the car-
following scenario. Another data-driven method was proposed
in [9], which extracted characteristics and joint features of
electroencephalography (EEG) data to judge whether the driver
will brake or not. The developed model efficiently distinguished
three no-braking emergency situations and presented a satisfac-
tory performance of detection in a wide range of emergency
situations. Meanwhile, another EEG-based method was also
proposed for brain-controlled vehicles by the application of reg-
ularization linear discriminant analysis with spatial-frequency
features, which performed a higher accuracy with a smaller time
delay [8]. Besides research studies in ADAS, Lv et al. [10]
proposed a hybrid learning-based approach combining GMM
and artificial neural network to classify the driver’s BIL and
quantitatively infer the braking pressure, which provided an
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additional redundancy for the braking system in the electric
vehicle.

Compared with model-based approaches that rely on specific
models, data-driven approaches have obvious advantages in the
improvement of performance when effective models are not
available [11]. Because of the nonlinearity and uncertainty of
driver behaviors, effective physical models for drivers cannot be
obtained easily. This issue will get even worse when the per-
sonalized driver-specific model is required for each individual
driver [12]. Under such circumstances, learning-based methods
without considering physical models have attracted increasing
attention and have been the core issue of many recent studies
[11]. One assumption underlying these studies is that sufficient
data can be obtained for all drivers. However, this assumption
cannot be satisfied in many practical situations, especially when
a new driver is being considered. To guarantee the performance
of traditional learning-based methods, sufficient data for the new
driver are needed and the process of data collection has to be
repeated. Collecting sufficient data for the new driver is time-
consuming work and needs extra financial support. Therefore,
how to efficiently recognize behaviors of newly involved drivers
with insufficient driving data is the key to develop effective
learning-based methods.

Previous studies proposed to combine sufficient historical
data and insufficient new data in one training dataset, but indi-
vidual characteristics of the new driver cannot be fully described
and the demand for new data is still at a high level. Some research
studies proposed to solve the problem by parallel learning, which
presents a promising approach to formulate the transfer learning
(TL) in the application of autonomous driving [13]. A novel
learning-based framework is proposed in this article to deal
with the problem of driver-specific braking behavior recognition
(DSBR) in the car-following scenario. This framework is devel-
oped based on the TL technology, which can help to construct
an effective recognition system for the new target driver with
insufficient driving data available by making full use of historical
data collected from other drivers. The main contributions of this
article are summarized as follows.

1) A novel TL-based framework, DSBR, is proposed to
effectively recognize new driver’s BIL with insufficient
driving data, which leads to a low-cost and data-efficient
approach for driver behavior modeling.

2) A scheme combining supervised and unsupervised meth-
ods is designed to automatically label and recognize BIL,
which is a hybrid learning framework for transferable
driver’s behavior modeling.

3) Instead of focusing on whether the driver will brake or not
[7], this research study clusters BIL into three categories
from the view of the statistic distribution, which provides
a more rational analysis of BIL.

The rest of this article is organized as follows. The detailed
methodology for the framework is presented in Section II.
Section III shows the problem formulation of the driver’s braking
intensity model and TL. Section IV describes experimental
settings, data collection, preprocessing, and finally, analyses
of experimental results. Finally, Section V concludes this
article.

Fig. 1. Car-following scenario considered in this article.

II. DRIVER-SPECIFIC BRAKING BEHAVIOR RECOGNITION

Based on TL, the framework for DSBR is detailed in this
section. To formulate an effective TL problem for DSBR, the car-
following scenario is considered. Details of the car-following
scenario and the proposed DSBR framework are described as
follows.

A. Description of the Car-Following Scenario

The car-following scenario is one of the fundamental test-
ing scenarios for modeling and analysis of driver behaviors,
which has been used to capture and model the braking behavior
of drivers [7]. As shown in Fig. 1, in this article, a typical
car-following scenario with one host vehicle and one leading
vehicle is selected. The goal of the host vehicle is to follow the
leading vehicle by properly accelerating or braking behaviors
according to the preference of drivers in the host vehicle. Similar
to [10], in our work, the braking behavior is described as the
braking intensity that can be divided into several different levels
according to the distribution of driving data. The objective of the
proposed framework is to successfully recognize driver-specific
BIL during the process of car following.

Following [7], the longitudinal behavior of drivers in the
car-following scenario is described by three variables: vh,t,Δxt,
and vl,t.Δxt is the relative distance between the host and leading
vehicles. vh,t and vl,t are velocities of the host and leading
vehicles, respectively. Considering the car-following scenario
shown in Fig. 1, states of scenario at time t is defined as
st = [vh,t Δxt vl,t]

T. To follow the leading vehicle, drivers
in the host vehicle usually perform braking behaviors according
to a combined influence of vh,t, Δxt, and vl,t [7], [14]–[16].
Different drivers will perform different brake actions based on
the driving experience, gender, and drivers’ own judgments of
danger. For instance, the expert driver always considers it as a
“safety” situation with a higher vh and smaller Δx , whereas
the same condition may be affirmed as a “danger” situation by
novice.

B. System Framework for DSBR

The proposed DSBR framework is shown in Fig. 2. For a new
driver B, different from traditional learning-based methods that
need sufficient driving data collected from driver B, the proposed
framework tends to use insufficient driving data collected from
driver B and sufficient driving data collected from driver A
based on the relationship between drivers A and B, which is
described by the ratio of density. It can be widely applied in
kernel-based methods that focus on applying distribution and
covariance function to predict or recognize driver behaviors.
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Fig. 2. Specific proposed framework: DSBR.

The proposed framework is composed of four main compo-
nents, i.e., GMM, unconstrained least-squares importance fit-
ting (ULSIF), importance-weighted least-squares probabilistic
classifier (IWLSPC), and importance-weighted cross-validation
(IWCV). Considering that different drivers have different thresh-
olds in decision-making of BIL, GMM, an unsupervised method,
is used to cluster driving data and automatically label BIL. UL-
SIF is applied to estimate importance weight (IW). IWLSPC is
employed to realize the covariate shift adaptation for DSBR from
driver A to driver B, and IWCV is designed for model selection.

In most conditions, rule-based labeling methods have poor
ability in the adaption for road situations with different braking
demands and drivers with different driving experiences [10].
Therefore, GMM, as a representative unsupervised method, is
introduced to classify and obtain the driver’s BIL [7], [10].
The GMM is chosen because it has demonstrated its powerful
effectiveness in modeling other driving tasks and the stochastic
features of driver behavior. The first advantage of GMM is that
no labeled data are required in the process of model training,
and the number of clusters can be chosen flexibly. The second
advantage is that GMM can obtain the probability distribution of
braking pressure with an unsupervised learning-based approach.
Multivariate GMMs can be represented as follows:

G(pb, θ) =
K

Σ
i=1

πi
1

(2π)d/2|Σi|1/2

× exp

[
−1

2
(pb − μi)

TΣ−1
i (pb − μi)

]
(1)

where θ = {θ}Ki=1 with θi = {πi, μi,Σi} and pb = {pb,i}Ki=1

is the braking pressure. μi and Σi are mean and covariance
vectors of the ith single Gaussian model, respectively. πi is
the prior probability with

∑K
i=1 πi = 1. The likelihood function

is formulated as follows:

p(pb|θ) =
K

Σ
i=1

p(pb,i|θ). (2)

The maximum iteration step is set in advance to obtain esti-
mated optimal parameters until values of the likelihood function
meet the maximum or convergent. The objective function to
calculate optimal parameters is shown as follows:

θ̂ = argmax
θ

L(θ) = argmax
θ

log(p(pb; θ)). (3)

However, the nonlinearity of (3) with regard to limits to
search the optimal value by directly solving (3). Fortunately,
the expectation–maximum (EM) algorithm provides a possible
means to get the optimal value that maximizes L(θ) with it-
eration. Meanwhile, for the first stage of GMM, the K-means
algorithm is applied as the initialization step. After the initial-
ization, the soft clustering of GMM with EM algorithm starts
to generate the cluster result with probability. The number of
clusters is preset. The cluster label a(braking intensity level), as
the ground truth of recognized results and the output of GMM,
can be obtained by the following function:

a = argmax
1≤l≤N

{Pr(l|pb,i)}. (4)

III. PROBLEM FORMULATION FOR TL

In order to realize the target of successfully recognizing the
target driver’s BIL by TL from source driver’s driving data, the
following methods are combined and developed as the DSBR
framework: ULSIF, IWLSPC, and IWCV. The overall architec-
ture of DSBR is shown in Fig. 2.

A. Significance of TL

To build a driver’s braking intensity model with better per-
formance, as many as possible situations should be covered as
training data. But the collection and analysis of personalized
driving data have following limitations.

1) The collection of sensor-based driving data for naturalis-
tic driving data is expensive. Due to complicated traffic
conditions in the real road, such as traffic jams, the useless
and useful driving data are mixed as a whole. Therefore,
the process of analysis is always time-consuming, which
includes manually extracting situations, model training,
and testing.

2) Driving data collected in the simulation have a lower
cost compared to the collection of naturalistic driving
data. However, the simulated platform cannot fully reflect
complicated and real road conditions.

3) The driver model built by personalized driving data col-
lection and analysis only fits the single driver whose
driving data are collected and analyzed [17], [18]. The
performance of the model decreases rapidly for target
driver’s driving data. Therefore, for a new driver with few
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driving data, the personalized driver model has limited
ability in the adaptation and generalization.

Three limitations mentioned above for personalized data
collection restrict the adaptation of the model between two
drivers. Therefore, TL is introduced as a new way to transfer
the knowledge and parameters of the model from the source
driver (sufficient driving data) to the target driver (insufficient
driving data).

It is worth noting that if all drivers’ driving data are sufficient
and fully supplied, TL is not required. In this article, the proposed
method mainly considers the situation where sufficient driving
data are collected from the source driver while insufficient data
are supplied for the target driver. Datasets of source and target
drivers are named as source domain DS and target domain DT,
respectively.

Most instance-transfer approaches to the transductive TL
setting are motivated by importance sampling. In general, we
want to learn optimal parameters θ∗ by minimizing the expected
risk [19], [20]

θ∗ = argmin
θ∈Θ

E(x,y)∈P [l(x, y, θ)] (5)

where l(x, y, θ) is a loss function that depends on the parameter
θ. However, since it is hard to estimate the probability distribu-
tion P , we choose to minimize the empirical risk minimization

θ∗ = argmin
θ∈Θ

Σ
ζ∈DT

P (DT)l(ζt, θ) (6)

where ζt = [st, at] and l(ζt, θ) is the loss function. The original
hypothesis for the proposed framework is that distributions of
source and target driving data are different, P (DS) �= P (DT).
Since insufficient labeled BIL are given in the target domain
as training data, we cannot obtain the target model with a high
accuracy in the recognition. The DSBR framework proposes
to learn the target model from the training data of the source
domain. Therefore, the risk function can be described as follows:

θ∗ = argmin
θ∈Θ

Σ
ζ∈DT

P (DT)

P (DS)
P (DS)l(ζT, θ)

≈ argmin
θ∈Θ

ns

Σ
i=1

PT(ζT,i)

PS(ζS,i)
PT(ζT,i)l(ζS,i, θ). (7)

According to [20, Definition 1], for the transductive TL with
the same learning task in source and target domains, we have
P (aT|sT) = P (aS|sS). Therefore, we can get the following
equation:

PT(sT,i, aT,i)

PS(sS,i, aS,i)
=

PT(sT,i)

PS(sS,i)
. (8)

Therefore, the final task to build a target model is to accurately
estimate or infer PT(sT,i)/PS(sS,i), which is solved by ULSIF.

B. Importance Estimator: ULSIF

The key point of instance-level TL is to estimate the ratio
PT(sT,i)/PS(sS,i) between two different density functions. The
ratio can be used for some applications, such as covariate shift
adaptation [19]. The density ratio estimator is developed based
on the assumption that distributions of the source and target

domains are independent and identically distributed. ULSIF is a
typical method to estimate IW by transforming the importance
fitting into the least-square (LS) problem. It can be transferred
into a convex problem, which can be solved by a standard
quadratic program solver.

To estimate ω(s) = pT(sT)/pS(sS), the linear model is used
to describe ω(s). The Gaussian kernel function is selected as the
basic function and sT = {sT,i}NT

i=1 are chosen as the Gaussian
kernel center.

ω̂(s;α) = Σb
l=1αlKσ(s, sT,l) (9)

where α = (α1, α2, . . . , αb)
T are parameters of the model,

which need to be learned by the training process. b is the number
of selected samples in the target domain, which is applied to
estimate ω(s). Kσ(s, sT,l) is the Gaussian kernel with a kernel
width σ. α is determined by minimizing the following LS
function:

J(α) =
1

2

∫
(ω(s;α)− ω(s))2pT(s)ds

=
1

2

∫
ω(s;α)2pS(s)ds−

∫
ω(s;α)2pT(s)ds+ C ′

=
1

2
αTHα− hTα+ C ′ (10)

whereC ′ is a constant,HisNT ×NT matrix, andh is the vector
with NT dimension, which are defined as follows:

Hn,n′ =

∫
Kσ(s, sT,n)Kσ(s, sT,n′)pS(s)ds (11)

hn =

∫
Kσ(s, sT,n)pT(s)ds (12)

where H and h can be approximated by the empirical averages

Ĥn,n′ =
1

NS

NS

Σ
n′′

K(sS,n′′ , sT,n)K(sS,n′′ , sT,n) (13)

ĥn =
1

NT

NT

Σ
n′=1

K(sT,n′ , sT,n) (14)

where Ĥ and ĥ are optimal values. The parameter α can be
obtained by solving an optimization problem

α̂ = argmin
α

(
1

2
αTHα− ĥTα+

γ

2
αTα

)
(15)

where γ
2α

Tα is the part for regularization. The analytical solu-
tion is applied to calculate α

α̂ = (Ĥ+ γINte
)ĥ. (16)

Finally, the nonnegative IW ω(s) is calculated as follows:

ω̂(s) = max

(
0,

NT∑
n=1

α̂nKσ(s, sT)

)
. (17)

C. Importance-Weighted Least-Squares Probabilistic
Classifier

In order to obtain recognized results based on TL, IWLSPC
is introduced, which combines the least-squares probabilistic
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classifier and IW provided by ULSIF [19], [21]. First, a kernel-
based model is built to describe and calculate the class-posterior
probability

p(a|s; θa)=
NT

Σ
n=1

θa,nK(s, sT,n) (18)

where θa is the parametric vector, and K(s, sT,n) is the kernel
function. θa,n is determined by minimizing the square error

J(θa) =
1

2

∫
(p(a|s; θa)− p(a|s))2pT(s)ds

=
1

2

∫
p(a|s; θa)2pS(s)ds−

∫
p(a|s)2pT(s)ds+ C

=
1

2
θa

TQθa − qT θa + C (19)

whereC is the constant independent of θa. θa,n can be calculated
by the following equation:

θ̂a=argmin
θa

[
1

2
θTa Q̂θa − q̂T

a θa +
λ

2
θTa θa

]
. (20)

In the abovementioned equation, λ is the regularization pa-
rameter to avoid overfitting problem. Q̂ and q̂a can be approxi-
mated based on IW ω(sS) by using data from source and target
domains, which are similar to the calculation of Ĥ and ĥ in (13)
and (14)

Q̂n,n =
1

NS

NS

Σ
n′′

K(sS,n′′ , sT,n)K(sS,n′′ , sT,n)ω(sS,n′′)υ (21)

q̂a,n =
1

NS
Σ

n′:aS,n′=a
K(sS,n′ , sT,n)ω(sS,n′)υ (22)

where the flattening parameter υ is used to controls the bias-
variance tradeoff in importance sampling. More specifically, if
υ is close to 0, the importance weights are used as they are; then,
the bias gets smaller, but the variance tends to be larger. On the
other hand, if υ is close to 0, the importance weights tend to
be one (i.e., flat). Then, the bias is larger, but the variance is
smaller. Consequently, the parameter vector θa in (18) can be
solved analytically by the following equation:

θ̂a = (Q̂+ λINT
)−1q̂a. (23)

Finally, the model can learn the class-posterior probability
p(aT|sT). Predicted results are obtained by

âT = argmax(p(a|sT)) (24)

where

p(a|sT) = 1

Z
max

(
0,

NT∑
n=1

θ̂a,nKσ(s, sT)

)
. (25)

If Z =
c

Σ
a=1

max(0,
NT∑
n=1

θ̂a,nKσ(s, sT)) > 0; otherwise

p(a|sT) = 1
c .

D. Importance-Weighted Cross-Validation

The choice of parameters in the proposed framework has a
great influence on the recognition of driver’s BIL. Each kernel

TABLE I
PARAMETER FOR DIFFERENT KERNELS

has its own parameters independently. Parameters for different
kernels are detailed in Table I. Alternative values for υ, λ, and σ
are {0, 0.2, 0.4, 0.6, 0.8, 1}, {10−2, 10−1.5, 10−1, 10−0.5, 100},
and {0.1, 0.2, 0.5, 0.6, 2, 3}, respectively. Meanwhile, selected
values for polynomial kernel are α ∈ {0.1, 0.3, 0.5, 1}, c ∈
{0.1, 0.3, 0.5, 1} , and d ∈ {1, 2}. Cross validation (CV) is a
common and standard method to select parameters of the model.
In [21], IWCV is applied and obtain a better performance than
the CV-based model selection. In this research, IW is considered
in the process of model selection. We randomly divide the
training dataset DS into K subsets {DS,k}Kk=1. f̂k(sS) is the
function trained by dataset DS\DS,k. The generalized error
based on IWCV is given as follows:

WIWCV =
1

K

K

Σ
k=1

1

|DS,k| Σ
(ζS∈DS,k)

ω(sS)loss(f̂k(sS),aS)

(26)
where ω(sS) is IW, which can be calculated by ULSIF. loss(·)
is the loss function to measure the discrepancy or difference
between the output f̂k(sS) and ground truth

loss =

{
1− sin(Rtrue)
1− sin(Rfalse)

(27)

where Rtrue = 1 and Rfalse = −1 are the rewards for true and
false recognition, respectively. Finally, we can get the optimal
parameters (example case: Gaussian kernel)

(λ̂, σ̂, υ̂) = argmin
(λ,σ,υ)

WIWCV(λ, σ, υ). (28)

With optimal parameters (λ̂, σ̂, υ̂) , recognized results for
target driver’s BIL can be illustrated as follows:

f(sS,1:t,aS,1:t, sT,1:t, sT,t+1; aT,t+1)(̂λ,σ̂,υ̂) : sT,t+1 → âT,t+1

(29)
where f(·) is the target driver model, which is built by data from
source and target drivers. The target driver’s state sT,t+1 at time
t+ 1 is considered as the input to obtain the recognized result
âT,t+1. In the process of evaluation and comparative study, the
recognized accuracy of BIL is calculated as the follows:

Accuracy =
N1 +N2 +N3 +N4

N
(30)

where N is the number of testing samples in the target domain.
N1,N2,N3, andN4are the numbers of correct recognition cases,
respectively.
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IV. EXPERIMENTS

A. Experimental Setting and Data Collection

The target of the proposed framework is to investigate the
performance of TL and model adaptation in the following two
conditions: transfer the driver model from virtual to virtual
and from naturalistic to naturalistic. Therefore, both virtual and
naturalistic driving datasets are required. For comparative study,
the balanced distributional adaptation (BDA) is selected [22].
The algorithm is implemented in MATLAB.1

1) Simulated Driving Data: To test and evaluate the pro-
posed framework, the PRESCAN simulation platform is applied.
To realize the human–vehicle close loop system, Logitech G27 is
equipped to collect human drivers’ driving data, and three view-
ing screens are used to provide the view of driving conditions.
In the driving simulator, sensors (GPS ans Lidar) are previously
set on the simulating vehicle [22]. During experiments, the
driver in the host vehicle is asked to follow the leading vehicle
in the same lane without cut in/out and overtaking behaviors.
In the process of car following, the leading vehicle brakes or
decelerates randomly. The driver in the host vehicle needs to
follow the leading vehicle according to the change of relative
distance between the two vehicles. Following data are collected
from the simulator and used for analysis: vhost, ahost, drelative,
vrelative, and simulation timestamp ttimestamp. Initial velocities
of the host and leading vehicles change from 43.2 to 54 km/h
and from 36 to 43.2 km/h.

2) Naturalistic Driving Data: Naturalistic driving data col-
lected from the public UAH DriveSet are used to test the
performance of the DSBR framework [23]. The public dataset
provides 500 min of naturalistic driving data from a smartphone,
which include GPS/IMU data, processed semantic information
for images, and relative distance for surrounding vehicles. UAH
DriveSet consists of six different drivers’ driving data with
different vehicles (Mercedes, Audi, etc.), two road conditions
(motor-way and secondary road), and three different drivers’
behaviors (normal, drowsy, and aggressive). In UAH dataset,
there is no information from the braking pedal, so the change of
acceleration is used to describe driver’s BIL [24], [25]. But for a
driver’s braking action, there exists a delay between the driver’s
braking action and the change of acceleration. Details of the
process that let deceleration replace the information of braking
pedal are presented in [24] and [25]. The details of collected
data are shown in Table II

B. Data Process

For naturalistic driving dataset and data collected in the simu-
lated environment, useful data and driving conditions for model
training and analysis are mixed with useless data. Therefore,
before the process of model training, data extraction is required
to generate the satisfied driving data for the car-following behav-
ior. As for driving data collected in the simulation, the following
conditions are removed from the dataset:

1The software toolbox developed in MATLAB by the authors and the collected
simulated and naturalistic driving data can be obtained from the first and
corresponding authors on reasonable request, which needs the agreement for
copyright from the university and the funding organization.

TABLE II
ILLUSTRATION OF THE COLLECTED DATA

Fig. 3. Illustration of the moving average filter method for host
acceleration.

1) collisions between the host vehicle and the leading
vehicle;

2) two vehicles are not in the same road lane;
3) the relative distance is larger than 70 m.

As for naturalistic driving data, considering the condition that
different kinds of leading vehicles have different influences on
the driver’s behavior, some specific vehicles (for example, truck)
are not chosen as leading vehicles. The following conditions are
removed from the dataset:

1) cut in/out of the leading and host vehicles;
2) the time duration is less than 20 s;
3) collisions between the host vehicle and the leading

vehicle;
4) two vehicles are not in the same road lane;
5) the relative distance is larger than 70 m.

The moving average filter method is used to smooth raw
driving data. The details and comparison of smoothness is shown
in Fig. 3.

C. Different Distributions Between Drivers

The original intention of TL is to investigate instance-level
knowledge transfer between two drivers with different driving
styles in the car-following behavior. Therefore, analyzing the
difference of two drivers’ behaviors is the first step.

From the view of statistical learning theory, the essential dif-
ference between drivers is the different distributions of driving
data. For instance, expert drivers tend to keep a small relative
distance or gap in the car-following scenario. The distribution
of relative distance for expert drivers’ driving data concentrates
at a smaller value compared to the novice. This article focuses
on the joint distribution between host acceleration and relative
distance, which can be presented in the form of the multivariate
Gaussian regression function as (1) and (2). As shown in Fig. 4,
the joint probability distribution of driver 2 has a shorter relative
distance and a larger scale of host acceleration compared to
driver 1. The distinct difference between driver 1 and driver 2
indicates that drivers 1 and 2 have different joint probability
distributions.
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Fig. 4. Comparison of joint distribution between two drivers. Driver 1:
the novice driver. Driver 2: the expert driver.

D. Labeling the Braking Intensity Level Based on GMM

For naturalistic driving data, the deceleration of the host
vehicle is chosen as the input of GMM. The output of GMM
is the identification results of BIL. The number of clusters is
selected based on BIC. However, although BIC can investigate
optimal GMM components, the index of GMM components
and the performance of the driving model are different. More
components could result in the overfitting problem, whereas less
components could decrease the accuracy of prediction because
some characteristics of data cannot be identified, which is sup-
ported by the following two theoretical foundations.

1) According to [26], three different levels of decelera-
tion are separately defined: maximum peak deceleration
(MPD), maximum deceleration average (MDA), and full
effective deceleration (FED), which are applied to de-
scribe main braking patterns.

2) In [10], the selection of cluster number K is based on the
tradeoff between computation cost and fitting accuracy.

Considering the classification of BIL,K= 3 is finally selected
as the cluster number. As GMM is specifically applied in identi-
fying brake intensity levels, the tradeoff between proportions of
each single Gaussian model and the diversity of clusters are
taken into consideration. Finally, BIL are labeled into three
clusters: low-intensity braking, middle-intensity braking, and
high-intensity braking.

From the two theoretical foundations that have been discussed
above, all available driving data collected from the UAH natural-
istic dataset are clustered into three groups, except for driving
data with zero brake pedal (As for UAH-dataset, deceleration
equals zero). Labeled results are shown in Fig. 5(a). Yellow
points stand for “no braking,” which are selected directly from
the available dataset. Three other clusters, as the output of GMM,
are named: high-, mid-, and low-intensity braking, respectively.
According to the clustering results of GMM, the proportions and
range for three clusters are separately shown as follows:

Label =

⎧⎨
⎩

Low 0 < x < 1.1
Middle 1.1 < x < 3.3
High x > 3.3

. (31)

Fig. 5(b) demonstrates the Gaussian distribution of GMM
with three components. Samples with a low-intensity braking
level are more than samples of the other two levels, so from
0 to 1.1, the value of density for this cluster is higher than
the others. And high- and mid-intensity braking clusters are
overlapped with each other, which indicates that these two
clusters have similar characteristics and cannot be distinguished

Fig. 5. (a) Clustering results of BIL. (b) Distribution of GMM for BIL.
(c) Comparison of Gaussian distribution between different drivers based
on GMM.

Fig. 6. Comparison of accuracy between different methods with the
increase of training data (simulated driving data).

thoroughly. As shown in Fig. 5(c), two GMMs are presented
for two drivers’ driving data. For the low-intensity braking, two
drivers’ distributions have a slight difference. But for the other
part of the two GMMs, the distribution for driver 1 is relatively
centered at the range of 1–3, whereas the range of driver 2 is
from 8 to 9. Comparative results indicate that driver 2 tends to
act “deeper” braking actions than driver 1. It also illustrates the
“different distribution” assumptions in this research.

E. Experiment I: Transfer Between Simulated Driving
Data

In order to make a comparison between the TL-based method
and traditional methods, GMM and LSPC are chosen as baseline
methods. Training data for LSPC (radial basis function, RBF)
are selected from the source domain, and training data for the
other four baseline methods are selected from the target domain.
With the increase of training data, Fig. 6 presents the change of
accuracy in the recognition.

1) General Analysis: As shown in Fig. 6, on the whole,
as the number of training samples increases from 120 to 1200
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Fig. 7. Confusion matrix of recognized results based on IWLSPC
(RBF) with simulated driving data.

Fig. 8. Comparison of accuracy between different methods with the
increase of training data—naturalistic driving data.

(10%–100%), the accuracy of all five methods increases obvi-
ously. Comparing IWLSPC (RBF) with GMM, the accuracy of
both models increases (in IWLSPC (RBF), it increases from
0.78 to 0.90, and in GMM, it increases from 0.70 to 0.86.).
But when training data are 120 samples (10%), the accuracy
of IWLSPC (RBF) is 0.08 higher than GMM. It indicates that
when the target domain has insufficient driving data for model
training, TL-based model IWLSPC performs better with the help
of importance weight and the prior knowledge from the source
domain. In contrast, the accuracy of GMM is relatively lower
(0.70) for the reason that insufficient training data are provided.
The lowest gap of accuracy between IWLSPC (RBF) and GMM
is 0.003. The decreasing tendency of the gap between IWLSPC
(RBF) and GMM indicates that sufficient training data lead to
the indiscrimination of traditional methods (without TL) and
TL-based methods. For the comparative study with TL-based
methods (proposed and BDA), the proposed framework can
obtain most of the best performance. The reason may be that
the balanced factor in BDA is difficult to select manually in the
training process.

2) Comparison Between IWLSPC (RBF) and LSPC
(RBF): As for LSPC (RBF), the definition of training data is
driving data from the source domain, which is different from
the definition of training data for IWLSPC (RBF). With the
increase of training data, the recognized accuracy of LSPC
(RBF) increases from 0.68 to 0.85. But the highest value of
accuracy is 0.85 [IWLSPC (RBF): 0.90; GMM: 0.86]. When the
number of training samples increases from 120 to 1200 samples,

the gap between IWLSPC (RBF) and LSPC (RBF) is always
larger than 0.09. It indicates that insufficient training data in the
source domain have a poor performance in the target domain and
TL-based method IWLSPC (RBF) can effectively realize the
instance-level knowledge transfer. Even with sufficient training
data, the highest accuracy for LSPC (RBF) is 0.85, which
indicates that ULSIF contributes a more adaptive driver model
with a higher accuracy.

3) Comparison Between Different Kernels: IWLSPC is a
kernel-based least-squares classification method. RBF is dis-
cussed and compared above. In order to investigate the influence
of different kernels, linear kernel and polynomial kernel are
chosen as baseline kernels for the evaluation of performance.
As shown in Fig. 6, RBF performs best among the three kernels.
Meanwhile, when the number of training data reaches 1200
samples, the accuracies of linear and polynomial kernels have a
tiny difference (0.810 and 0.812). Before the two kernel-based
models mentioned above reach their best performance, the rec-
ognized accuracy of polynomial kernel is always higher than
linear kernel (from 120 to 1080 samples). The accuracy shows an
increasing tendency steadily (from 0.748 to 0.81) while linear-
kernel-based IWLSPC goes up from a relatively low accuracy
(0.658). The detailed performance of IWLSPC (RBF) is shown
in Fig. 7. The optimal parameters of this case study are υ = 0.2,
λ = 10−0.5, andσ = 0.5. A total of 3009 data points in the target
domain are labeled by GMM as ground truth, which include
2211 no braking, 197 low braking intensity, 112 middle braking
intensity, and 489 high braking intensity. In the confusion ma-
trix, the accuracies of recognizing the above-mentioned braking
intensities are 91.2%, 64.5%, 85.7%, and 95.1%, respectively,
whereas the overall accuracy is 89.1%. In order to fully verify
the DSBR framework, besides the experiment introduced above
(from driver 1 to 2), five other experiments are also operated:
driver 2 to 1, driver 1 to 3, driver 3 to 1, driver 2 to 3, driver 3 to
2. Details of the experiments are shown in Table III.

F. Experiment II: Transfer Between Naturalistic Driving
Data (Motorway and Secondary Roads)

The target of the DSBR framework is to realize the instance-
level knowledge transfer using both simulated and naturalistic
driving data. Therefore, after the comparative study for simu-
lated driving data above, a similar study for naturalistic driving
data is also presented. On the whole, according to Fig. 8, as for
the comparison of accuracy between different methods with the
increase of training data, the increasing tendency of accuracy
is the same as simulated driving data. An 80-s continuous
car-following behavior in the UAH dataset is extracted as ground
truth. Four braking actions happen in the 80-s car following.
Compared to four baseline methods, IWLSPC (RBF) performs
better in the first and third braking actions and most of no braking
conditions. As for the confusion matrix of IWLSPC (RBF),
accuracies of recognition are 92.7%, 76.3%, 80.0%, and 88.1%,
whereas the overall accuracy is 89.0%, which is slightly lower
than simulated driving data. The optimal parameters for Fig. 9
are υ = 0.6, λ = 10−1, and σ = 0.2. To validate the influence
of parameter tuning, the flattening parameter is changed from
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TABLE III
EXPERIMENTAL RESULTS FOR SIMULATED DRIVING DATA (EXPERIMENTAL I)

Bold values indicate the best performance in the comparative study.

TABLE IV
EXPERIMENTAL RESULTS FOR NATURALISTIC DRIVING DATA (EXPERIMENTAL II)

Bold values indicate the best performance in the comparative study.

Fig. 9. Confusion matrix of recognized results based on IWLSPC.

0.6 to 0.2, and accuracies of recognition are 90.7%, 75.3%,
80.4%, and 84.1%. The comparative result for parameter tuning
indicates that the optimal parameters selected by IWCV can
represent the best performance of the trained model. Details of
the comprehensive comparison are shown in Table IV.

In the simulated environment, we can simply ask the driver in
the host vehicle to drive by requirements according to the infor-
mation of the leading vehicle (only two vehicles in the environ-
ment: host and leading vehicles). However, for the naturalistic
driving scenario, real road conditions are more complicated than
those in the simulation. The driver’s behavior is a combination
of all perception information. And the impact factor used for
simulation driving data can only represent the main influence.
For this reason, comparing results in Figs. 6 and 7, the accuracies
of naturalistic driving data are relatively lower than those in
simulated driving data for each method in most conditions (with
different training data).

G. Experiment III: Transfer Between Naturalistic Driving
Data (Urban Scenarios)

In experiment I, the driving data from simulated environment
is collected for verification. Considering that the scenario in
the simulator is simpler and more controllable compared to
real-world scenarios, the UAH-DriveSet is used to extract the
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TABLE V
EXPERIMENTAL RESULTS FOR URBAN CAR-FOLLOWING DRIVING DATA

(EXPERIMENTAL III)

Bold values indicate the best performance in the comparative study.

naturalistic driving data in experiment II. In order to fully support
and verify the proposed DSBR framework, naturalistic driving
data collected in the urban scenario are applied in experiment
III. The platform for data collection is the same as the intelligent
vehicle presented in [22].

In experiment III, two drivers with different driving experi-
ences participate in the on-road data collection. The setting and
procedure of data preprocessing are the same as experiments I
and II. Experimental results are shown in Table V. With the in-
crease of samples in the target domain, the recognized accuracy
of all three methods increases. For the TL from driver 1 to driver
2, the performance of IWLSPC increases from 0.748 to 0.870,
which is better than BDA and GMM. Also, the TL from driver
2 to driver 1 has the same trend. It indicates that the proposed
DSBR framework can successfully model the transferable driver
behavior in the urban scenario. Meanwhile, the time cost in the
training and testing process is recorded to reflect the real-time
performance. In experiment III, with 1200 samples in source
and target domains, the training time of DSBR is 11.102 s,
whereas the testing time for the recognition of BIL is about
8500 Observation/s. The result of the time cost indicates that
the proposed method is acceptable for the real-time application.

V. CONCLUSION

In this article, a novel instance-level TL-based framework
to recognize the driver’s BIL in the car-following scenario was
proposed and developed. The proposed framework combined an
unsupervised method, GMM, and IWLSPC. First, GMM was
applied to label BIL according to the distribution of driving
data. Then, the TL-based method IWLSPC was designed to
transfer the knowledge from the driver with sufficient driving
data (source domain) and identify BIL for the new driver with
insufficient driving data (target domain). In order to verify the
proposed DSBR framework, naturalistic driving data collected
from UAH-dataset were used. Experimental results indicate that
the proposed DSBR framework has better performance than
the method without TL when training data are not sufficient. It
shows the advantages of the TL-based driver-specific behavior
model. The proposed DSBR framework can model a new driver
with insufficient driving data, which is difficult to realize by
GMM and other conventional methods without TL. Meanwhile,
reducing the reliance on the number of driving data has great
potential in saving cost for driving data collection. This work

pays more attention to the longitudinal driver behavior. In our
future work, the lateral driver behavior will be considered.

Kumar et al. [24] and Rajaram and Subramanian [25] pro-
posed to model an electropneumatic braking system by approx-
imating the first-order linear system based on the mathematic
method, which is used to predict the change of pressure in the
braking chamber. The deducing process of time delay between
the driver’s braking actions and the change of deceleration is
utilized to illustrate the rationality of letting deceleration repre-
sent braking behaviors. Experimental results indicated that the
steady pressure in the braking chamber and the voltage supplied
for the braking system (actuator) has a linear relationship

pbss = 90000Vreg + patm (32)

where Vreg is the voltage supplied to the electropneumatic regu-
lator system and patm is the atmospheric pressure. The transient
pressure’s governing equation can be assumed as follows:

a1̇̃pb(t) + p̃b(t) = a2u(t− τ) (33)

where a1and a2 can be obtained by experiments, p̃b(t) is the
measuring pressure in the braking chamber, and u(t− τ) is the
voltage supplied for the braking system. Finally, the open-loop
transfer function is obtained as follows:

G(s) =
p̃b(s)

U(s)
=

a2
1 + a1s

e(−τs) (34)

where e(−τs) describes the time delay, which can be estimated
and calculated by experiments. According to [24] and [25], the
time delay for a step voltage is 30 ms.
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