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A Hierarchical Framework for Interactive Behaviour
Prediction of Heterogeneous Traffic Participants
Based on Graph Neural Network

Zirui Li

Abstract—In complex and dynamic urban traffic scenarios,
the accurate prediction of trajectories of surrounding traffic par-
ticipants (vehicles, pedestrians, etc) with interactive behaviours
plays an important role in the navigation and the motion planning
of the ego vehicle. In this paper, based on the graph neural
network (GNN), we propose a hierarchical GNN framework to
model interactions of heterogeneous traffic participants (vehicles,
pedestrians and riders) combined with LSTM to predict their
trajectories. The proposed framework consists of two mod-
ules with two GNNs for interactive events recognition (IER)
and trajectory prediction (TP). The IER module is used to
recognise interactive events between traffic participants and the
ego vehicle. With the recognised results as the input, the TP
module is built for interactive trajectory prediction. In addition,
to realise the multi-step prediction, a long short-term memory
network (LSTM) is combined with GNN in the TP module. The
proposed hierarchical framework is verified by the naturalis-
tic driving data collected from the urban traffic environment.
Comparative results with state-of-the-art methods indicate that
the hierarchical GNN framework obtains an outstanding perfor-
mance in the recognition of interactive events and the prediction
of interactive behaviours.

Index Terms—Trajectory prediction, interactive behaviours,
graph neural network, heterogeneous traffic participants.

I. INTRODUCTION

AFELY driving in the urban environment is a great chal-
lenge for autonomous driving systems due to dynamic and
complicated traffic situations involving heterogeneous traffic
participants (vehicles, pedestrians, etc). Accurately modelling,
understanding and predicting behaviours of traffic participants
have a significant effect on the motion planning and the control
for autonomous vehicles [1]-[4]. With this in mind, many
researchers have made efforts to model the behaviours of
traffic participants and predict their trajectories. According to
the specific and detailed modelling process, previous works are
divided into three categories: physical-model-based methods,
manoeuvre-based methods and interaction-aware methods [3].
The physical-model-based methods focus on physical char-
acteristics of vehicles and predict the trajectories of vehicles
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by kinematic and dynamic models, which are built based on
control inputs (e.g. acceleration, velocity and steering), vehicle
properties (e.g. mass and wheel base) and environmental
conditions (e.g. speed limit and road type) [3], [5], [6].
However, riders and pedestrians reflect higher uncertainty in
motion prediction compared to vehicles and do not have
explicit kinematic and dynamic models. Therefore, the physi-
cal models cannot accurately predict trajectories of riders and
pedestrians. In addition, physical-model-based methods are
unable to model the interactions and influence among traffic
participants, which is important for the trajectory prediction
and the behaviour understanding [3].

Due to the disadvantages of the physical models, intentions
of traffic participants are considered in the manoeuvre-based
methods which model the future motion of traffic partici-
pants based on their current and historical manoeuvres [7].
The manoeuvre-based methods usually consist of two steps:
manoeuvre recognition and trajectory prediction. The manoeu-
vres are defined as a series of movement patterns or driver
intentions. The step of manoeuvre recognition firstly recog-
nises intentions or patterns whose types are pre-defined. For
example, in the non-signalised intersection, the manoeuvres
of vehicles can be defined as: “turn left”, “turn right” and
“go straight” [8]. According to recognised results, the trajec-
tory prediction step outputs the future trajectories based on
the pre-trained model in each manoeuvre group [7]. In the
manoeuvre recognition step, statistical-learning-based meth-
ods, such as SVM [9], [10], HMM [9], [11], GMM, Bayesian
Network [12], random forest classifiers [13], manifold align-
ment [14]-[16] and transfer learning [17]-[19], are developed
and applied to recognise manoeuvres of traffic participants.
Except for statistical learning, artificial neural network, such
as recurrent neural networks (RNN) are other choices for
manoeuvres recognition [20]. In the step of trajectory predic-
tion, widely-used methods include rapidly-exploring random
tree (RRT) [21], Gaussian process (GP) [22] and cluster-based
models [23], [11]. However, these methods are unable to pre-
dict long-term trajectories because the above methods cannot
model the relationship in time series to process sequences
of inputs. To overcome this limitation, RNN-based meth-
ods are developed in recent studies [24], [25]. Although
the manoeuvre-based methods can take intentions of traffic
participants into account and make the predicted trajectories
interpretable, these approaches have their own limitations.
In dynamic and complicated traffic scenarios, each traffic
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participant in manoeuvre-based studies is modelled individ-
ually and the relationships among different participants are
not considered.

The interaction-aware methods provide a better under-
standing of the influence and dependencies among traffic
participants, which is important for accurate prediction of tra-
jectories [26]-[30]. In these researches, trajectories predicted
by the interaction-aware methods are named as interactive
trajectories. In [26], an extension of RNN, social LSTM (long
short-term memory) network is proposed to model the inter-
actions among pedestrians as social behaviours. Here, “social”
represents the impact for one pedestrian from their neighbours,
which is realised by encoding the features of the pedestrians
with the social pooling mechanism. LSTM is applied to model
the interactions between different pedestrians in time series.
Based on social LSTM, social GAN (generative adversar-
ial network) are developed to predict interactive behaviours
successively [31]. However, these “social” aware methods
describe interactions between traffic participants implicitly,
which are unable to quantitatively interpret the degrees of
interactions. To solve this problem, some researchers proposed
to model the interactions between traffic participants by the
graph structure with nodes and edges [32]-[34]. In [33], each
node in the graph structure can be modelled by an LSTM
network to predict long-term trajectories of vehicles in the
highway. The graph structure is also applied in the predic-
tion of the traffic flow for intelligent transportation systems
(ITS) [35]-[38]. Considering the interactions between different
types of traffic participants, [39] proposed a graph neural
network (GNN) named Trafficpredict to predict trajectories of
heterogeneous participants. However, the explicit relationship
with the semantic definition among different traffic partici-
pants are not considered in Trafficpredict. In this research,
the definition above is named as interactive events [40].
Besides, the features of interactive trajectories, interactive
events between two traffic participants can be applied to model
interactive behaviours [40]. Following [40], the interactive
event considered in this paper refer to the events involving
at least two traffic participants when interactions happen
between them. Typical interactive events include overtaking
from left (right), driving away from left (right), parallel
driving in left (right), etc. And these can cover most of the
situations for vehicles, riders and pedestrians. The detailed
descriptions of these events can be found from [40]. Specific
interactive events of traffic participants, as a main component
of interactive behaviours, are neglected in [33] and [39],
which reduce the potential of GNN for the interaction-aware
trajectory prediction. In this paper, a hierarchical GNN-based
framework for the interactive behaviours prediction of het-
erogeneous traffic participants is proposed. The proposed
framework consists of two modules, IER and TP, which
combines the advantages of manoeuvre-based and interaction-
aware methods.

Main contributions of this paper are as follows:

1. A novel hierarchical GNN framework is proposed for the
interactive behaviours prediction of heterogeneous traffic
participants. The framework firstly recognises interactive
events among traffic participants and the ego vehicle.
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Secondly, recognised results are combined with historical
trajectories to predict future trajectories.

2. Considering that different types of traffic participants
have different characteristics of motion patterns, a new
layer representing the feature of the participants with the
same type is applied in GNN to model the similarities of
traffic participants.

3. The proposed framework combines manoeuvre-based
and interaction-aware methods within a hierarchical
structure, which obtains the advantages from both
sides.

The rest of this paper is arranged as follows. The description
of proposed hierarchical GNN framework is presented in
section II. Section III details the problem formulation and the
methodology. Experimental settings and comparative results
are shown in section IV. Conclusion and future works are
summarised in section V.

II. DESCRIPTION OF THE HIERARCHICAL FRAMEWORK

To predict interactive behaviours of heterogeneous traffic
participants in the dynamic urban environment, a hierarchical
GNN-based framework is proposed in this paper. The spatial
interactive behaviours are modelled by graph structures in
the proposed framework. It represents the mutual influence
among traffic participants at the same time, which is mea-
sured by the spatial distance between two participants. And
interactions in time series are captured and modelled by
LSTMs, which describe the correlation and dependency of
sequential inputs. LSTMs are applied on nodes and edges
in the graph, which construct the GNN structure. In this
research, interactive behaviours are modelled and predicted
from the two perspectives: interactive events and trajectories,
which are realised by interactive events recognition (IER)
and trajectory prediction (TP) modules in the hierarchical
framework, respectively. The illustration of the framework is
shown in Fig.1.

In the IER module, an X-to-1 GNN is trained on the basis
of the historical trajectory information and is used to recognise
interactive events among traffic participants. The “X-to-1”
indicates that interactions in time series are modelled by X-to-
1 LSTM with sequential inputs and single output (recognition
results of interactive events). In the X-to-1 GNN, each traffic
participant is modelled as a node in the graph structure, and
the interaction between two participants is represented by
the spatial edge connecting two spatially distributed nodes.
An X-to-1 LSTM is applied to each node and edge to
describe the correlation in time series. The IER module can
be represented by the function ¢igRr:

O1ER = PIER (St —n2t) (1)

where s;_,.; = [s'",...,s'"!,s'] is a set of inputs indexed

from time ¢t — n to ¢ and OjgRr is a set containing recognised
results for interactive events which are labelled according to
different traffic participants. At time ¢, the feature of input s’
is defined as follow:

s = (x', vy, ) (2)
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Fig. 1. The proposed hierarchical GNN-based framework.

In the module of TP, historical trajectories and interactive
events recognised by the IER module are integrated as the
input of an X-to-X GNN. The “X-to-X” means that an
X-to-X LSTM is applied to model interactions in time
series with sequential inputs/outputs. Different from the
X-to-1 LSTM in the IER module, LSTMs in the TP module
output sequential trajectories. To guarantee the consistence
of the representation of traffic participants, the same graph
structure used for IER is applied to TP. The function of TP
module can be illustrated by the following equation.

O1p = ¢1P(OIER, St—n:1) (3)

where O7p = [xt+1, yt+1; o xt+m71’ yt+m71; xter’ yt+m]
are predicted trajectories for the instance nodes from time
t + 1 to t + m. For both X-to-1 and X-to-X GNN models,
a similar instance layer proposed in [33] is constructed for
different traffic participants as a graph structure. Considering
that the traffic participants with different types have different
movement patterns [39], a parallel layer named the category
layer, representing features of different participants, is built.

The hierarchical framework is proposed to predict trajecto-
ries of traffic participants by modelling interactions among
traffic participants in dynamic urban scenarios. At time f,
the feature of i’ traffic participant is denoted as:

“)

t tot tot &t
fi =[s;, a;1 = [x;, y;» ¢ a;]

where x and y are coordinates in x-axis and y-axis. a is
the labelled interactive event, and ¢ is the type of i’/ traffic
participant. The proposed framework is a general framework,
which can be applied in the scenario with arbitrary number
of instances. In this work, three types of traffic participants,
vehicle, pedestrian and rider, are considered.

In the proposed framework, to guarantee the consis-
tence of the representation for traffic participants, IER
and TP modules are developed based on the same graph
structure G = (Ajnstances Acategorya Espatial» ETemporal)» Here,
the instance node Aijpsuance represents the traffic participant
in the instance layer with feature f;. Traffic participants with
labelled interactive events are modelled as nodes with the
form Aipstance = [x,y,c,a]. The super node Acategory 1S
constructed to model the similarity of instance nodes with the
same type. Two kinds of edges, the spatial edge Espatial and
the temporal edge ETemporal are used to represent spatial and
temporal characteristics of interactive behaviours. Specifically,
the interaction between two traffic participants i and j at
time  are modelled as the spatial edge Eé’égﬁa] = (A}, A)).
The spatial edge E;};{mal for A} is calculated as ff, =
(xfj, yl.’j,cl’.j,afj), where xi’j =x! — x; and stands for relative
positions from A’j to Al, respectively. The unique encoder is

applied to represent cl’.j and afj, which are unique encoding

of the spatial edge Eé’;{;ﬁal for types of traffic participants and

interactive events. The spatial edge from A’j to Al is donated as
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ELE = (A", A). Similarly, the correlation and dependency

Spatial —
of same traffic-agent in adjacent frames is defined as temporal
edges EIT’érlnporal (A", A™™1), which is used to share the

historical information in the temporal aspect. In this research,
frames represent the combination of pictures and features at

each timestep. The feature of temporal edge EIT‘;nporall can be

described in the same way by substituting A’ with A§+ .
The definition above illustrates the problem formulation
of the instance layer. In the category layer, a super node
Acategory 18 used to describe similar movement patterns for
each type of traffic participants. All instance nodes with the
same type ¢; in the instance layer are integrated in one group.
To transfer the information between instance and category
layers, each instance node has an edge oriented toward super
node ACategory In addition, after modelling the similarity of
movement patterns, the super node Aéategory passes back the
information by the directed edge oriented toward the group
of instance nodes. Similarly, the temporal edges are also
constructed among super nodes. Temporal edges are used
to represent the environmental information and model the
interactions between heterogeneous traffic participants. The
relationship between LSTMs, nodes and edges in two modules
are illustrated in Fig.2. IER and TP modules are presented
from top to bottom. Sequential inputs are fed into the IER
module through fé 1» 3, and f! 11> Which are used to construct the
graph edge E, calculate hidden states h of LSTMs and gener-
ate recognised interactive events a. The historical information
and recognised results in the IER module are combined as the
input to the TP module, which has a similar GNN structure
of the IER module. Finally, the TP module outputs predicted

t+1:t4pred +1:r+pred
trajectories [x, Hlitpre s yiJr tpre ].

III. THE FORMULATION OF GNN

In the proposed hierarchical GNN-based framework, IER
and TP modules are developed based on GNN which consists
of two layers, the instance layer and the category layer. The
instance layer is used to learn motion characteristics of traffic
participants, and the category layer is built to model movement
patterns of traffic participants with the same type. Two layers
are detailed as follows. Statements of primary parameters of
the instance layer and the category layer are detailed in Table I
and Table II, respectively. In Fig.3, a schematic diagram
is presented to explain the formulation of the instance and
the category layers. The temporal edge LSTM, node LSTM,
spatial edge LSTM and information transfer are represented
by four types of arrows. ESpatlal from node #3 and Ets}fitial
from node #2 are combined as H{ at time 7. The information
transferred between the super node #1 and the instance node
#1 are presented by d| and 7/,.

A. Instance Layer

Characteristics of instances (or traffic participants) in traffic
are captured by the instance layer. For each instance node
Ainstances an LSTM is assigned to predict the node changes.
Considering that traffic participants with different types have
different characteristics and motion patterns, instance nodes in
the same category have the same parameters. In this research,
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Fig. 2. The detailed illustration of proposed framework.

three LSTMs are trained in the instance layer for pedestrians,
vehicles and riders. Features of Espatiai and Etemporal are
sent to spatial edge LSTMs and temporal edge LSTMs,
which are applied to model spatial edges and temporal edges,
respectively. All spatial edges share the same parameters for
LSTMs and all temporal edges are divided into three categories
according to the corresponding node type. Primary variables
in the instance layer are detailed in Table I.

At time ¢, the feature f I of spatlal edge E{
is embedded into a fixed vector z
edge LSTM L;;:

Spatlal = (At At)
, which is the input to the

= Q(f;, WE,,) ®)

where Q(-, ) is a linear embedding function, and W¢_, are

spa
weights of the embedding layer. Then, zl.j will be sent to
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TABLE I
STATEMENTS OF PRIMARY VARIABLES IN THE INSTANCE LAYER

Parameters Annotation
Ay ance Instance nodes
Egpuia Spatial edges
Temporal edges

Temporal
L, The spatial edge LSTM
L, The temporal edge LSTM

; The instance LSTM
hf-,- The hidden state in spatial edge LSTM
h!, The hidden state in spatial edge LSTM
H| The weighted sum of h;,
hl! The first hidden state of the instance node LSTM
h2!" The final hidden state of the instance node LSTM

LSTM L;; and generate the hidden state h} i

hi, = LSTM(hﬁ;l z (6)

> Hijo Wldpa
where Wl‘Pa are weights of the spatial edge LSTM. hﬁ .
contains the information of spatial relations. The temporal
edge EIT’éI]nporal = (A, A§+l) is defined in the same way as
the spatial edge. Similarly, the output hﬁi of the temporal edge
LSTM L;; contains the information in time series.

In the urban environment, each traffic participant may inter-
act with several surrounding participants, and the importance
of which may not be the same. To quantify the importance of
surrounding traffic participants, the proposed GNN framework
uses the soft attention mechanism mentioned in [41] to assign

different weight w to different spatial edges of an instance

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 7, JULY 2022

node:

k
Ve,
where W;; and W;; are embedding weights for spatial and
temporal edges, respectively. Dot (-, -) is the dot product, and
k/+/d, is the scaling factor. Finally, impacts of the surrounding
traffic participants in the spatial view are calculated by the
weighted sum of hl’.j, which is denoted by Hj. And the
temporal influence on trajectories of i’ traffic participant
is denoted as h,. Thus, H! and h!, are concatenated and
embedded into the fixed vector al’., which will be concatenated

with the feature of instance node fl.’ as the input to instance
LSTM L;:

w(hl;) = sof tamx(—=Dot (W:hi;, Wi;hi)))

ii°

@)

d
7 = Q] Wilince ®
d
al = Q(concat (hi;; H); Wi, 5o ) ©)
hi! = LSTMh2!™"; concat (25 al); Whnee)  (10)
where W{‘&‘gﬂce and Wfffznce are embedding weights, and
Wk nce is the weight of i instance node LSTM cell. h1! and

h2§_1 are the first and the final hidden states of the instance
node LSTM, which are illustrated in Section III. (B).

B. Category Layer

By distinguishing different categories of the participants and
setting parameters for each type, the model can make an accu-
rate prediction. Considering that different traffic participants
have different characteristics, the category layer is applied in
the proposed framework to capture category properties.

Each frame consists of one image and labels for trajectories.
Every category of participants passes information about their
characteristics by frame in time series. Therefore, for each type
of participants, super nodes Ag,coory> # € {1,2, 3} are set with
LSTM. Similar to the instance nodes, super nodes also have
temporal edges in time series, which are shown by dash lines
in Fig.1. The category layer consists of the four parts: super
nodes, temporal edges for super nodes, directed edges from
instance nodes in the same group to super nodes and directed
edges from super nodes to instance nodes.

Each traffic participant produces the hidden state h1§ and
the state of instance node cl’. at time ¢,which are combined as
the movement feature d!,, for m' " instance node in the category
u.

d!, = hl} ® softmax(c})

(11)
The feature F!, of the corresponding super node A% cgory? U €
{1,2,3} will be obtained by computing the average of all

instance features d = {d,,}" _, belonging to the same category
u:

1 n
t 1
F,=- > dy, (12)
m=1
Equation (12) shows that the feature of u" super node F/,
takes each instance into account, and captures the character-
istics for participants with the same type, which will transmit
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TABLE 11
STATEMENTS OF PRIMARY PARAMETERS IN THE CATEGORY LAYER

Parameters Annotation
— Super nodes in the category layer
d, The movement feature for m” instance node
F! The feature of the corresponding super node
F, The feature of temporal edge in the category layer
h', The hidden state of temporal edge LSTM
h, The hidden state of category LSTM (super node)
hl’, The hidden state in spatial edge LSTM
h2! The final output of instance node

the information by the edge from the instance node to the
super node.

In the category layer, the feature of the temporal edge F!,,
is calculated by F!, — F!~!, which will be combined with the
hidden state h], to calculate the temporal edge between the
same super node in adjacent frames:

zim = Q(Fitw WSt (13)
W, = LSTM.,"; 7 ; Wh (14)

where W¢; and Wth are weights of the embedding layer and
temporal LSTM cells.

Then, features from the group of instance feature F!, and
temporal feature h!,, are integrated with the hidden state h},
of the super node as follows:

z, = Q(F,, Wy°)

us

h! = LSTM(h!"; concar (z; !, ); W)

15)
(16)

where W¢ and WL are embedding weights and super node
LSTM cells.

Finally, h!, will be concatenated with h1!, and sent back to
each instance node. The second hidden state h2!, is the final
output of the instance node:

h2), = Q(concat (hll; hl); W¢) a7

where W, are embedding weights and h2, is the final output
of the m!" instance node. Primary variables in the category
layer are detailed in Table II.

C. Interactive Events Recognition and Trajectory Prediction

The proposed hierarchical framework firstly recognises the
interactive events in the IER module and secondly sends
results of the recognition into the TP module, which assumes
that the positions of the traffic participants in the next frame
meet the bivariate Gaussian distribution with mean [L; =
(fx, py)t, standard deviation ¢! = (o, 0y)} and correlation
coefficient pf. Corresponding positions can be represented by

(xt, yh) ~ [, ot pi] (18)

The second hidden state of the instance node is used to
predict these parameters using the linear function Q(-, -):

(i, ol pll=QMiy", Wy) (19)
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The loss function in the IER module Ligr is defined by
the cross-entropy function, because of its advantage in the
classification problem [42].

LIER(Wspm Weem, Wins, Wy, Wsup, Wi, W)

= cross_entropy(I}; sit )

10
where si’ s the ground truth label for " traffic participant at
time 7+ 1. Il = Q(h2{, W;) is the embedded vector generated
by embedding weights W; and the final hidden output of L;.

According to [39], the loss function in the TP module Ltp

is defined by the negative log Likelihood:
LTP(Wspm Weem, Wins, Wy, Wsup, Wi, W)

Tpred
=— > log(P(xl.y!|ul.al.pD) @D
t=Tobs+1

In the model training process, the target is to minimize loss
functions Ligr and Ltp. At each time step, the proposed hier-
archical framework back-propagate the error through instance
nodes, category nodes, spatial edges and temporal edges to
update parameters (Wspa, Wiem, Wins, Wst, Wsup, Wi, We).

IV. EXPERIMENTS

In this work, the proposed framework is verified in the
urban environment with heterogeneous traffic participants. [40]
built a large-scale SD semantics benchmark (BLVD), a dataset
with labels for interactive events, which is selected as testing
data. Training algorithms and relevant tests are implemented in
Pytorch1 on a PC with an Intel Core i5-6300HQ at 2.3GHz,
8GB RAM and 960M GPU. Details of the implementation,
evaluation metrics, baseline methods and experimental results
are presented in the following subsections.

A. Dataset

Previous studies presented in [33], [43]-[45] verify their
methods using NGSIM, which have the following limitations:
1) The highway scenario is simpler with similar road con-
ditions compared to the urban scenario. 2) Only trajectories
of vehicles are collected, but the proposed framework needs
heterogeneous traffic participants to model the complex and
dynamic scenario. 3) No label for manoeuvres is provided,
which is the foundation of proposed framework. Considering
the three drawbacks above, the proposed hierarchical frame-
work is verified by BLVD dataset and compared with state-
of-the-art methods [40].

In order to verify the performance of proposed frame-
work, the 5D dataset BLVD with explicit labels for interac-
tions is selected in experiments. Different from other public
datasets, BLVD provides a dynamic 5D semantic benchmark
(3D+temporal-+interactive), including 654 calibrated video
clips for three kinds of participants: vehicles, pedestrians and
riders (cyclists and motorbikes). And four types of scene
conditions are collected in BLVD: daytime & low densities,
night time & low densities, daytime & high densities, and night
time & high densities. Moreover, 13, 8 and 7 interactive events

1 https://pytorch.org/
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Fig. 4. Detailed characteristics of trajectories.

TABLE III
THE MAIN PARAMETERS IN THE EXPERIMENTAL VALIDATION

Parameter Value
Temporal edge cell 128
Spatial edge cell 128
Node cell 64
Embedding layer 64

Learning rate 0.001
Epoch 20

between the ego vehicle and traffic participants are labelled in
BLVD for vehicles, pedestrians and riders, respectively [40].
Statistics of the number of event fragments with respect to
event type and length range of fragments are detailed in Fig.4.

B. Details of Implementation

In the urban traffic, interactive scenarios involving pedestri-
ans are relatively less compared to those involving vehicles and
riders. In most cases, the ego vehicle interacts with vehicles
and riders, while pedestrians walk on the sidewalk. Therefore,
in the BLVD dataset, the pedestrian trajectories are much fewer
than trajectories of vehicles and riders. According to statistical
results of BLVD, the ratio for trajectories of pedestrians, riders
and vehicles collected in the BLVD dataset is 317:1114:3471
(1:3.51:10.94). Considering that the length of some trajectories
for pedestrians and vehicles is too short and unbefitting in
the training process, finally, 187, 1,039 and 2,222 trajectories
of pedestrians, riders and vehicles are selected, respectively.
Although only 187 trajectories of pedestrians are used for
model training, the model performance can be guaranteed with
a high accuracy of prediction and recognition in our test (as
shown in Figs.8, 9 and 10 and in Tables IV, V and VII).
We randomly sample 3103 trajectories (90%) for training and
the rest (10%) for testing. The main parameters in the training
process are detailed in Table III.

To evaluate the performance of the proposed hierarchi-
cal framework in different conditions, three groups with
different length of observed frames and predicted frames

an Length of Trajectori

Me;

o

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7
Interactive Event Type

Interactive Event Type

0]

(Observation— Prediction) are set in two experiments. The
lengths of observations are set as 10, 20 and 30 frames (1s, 2s
and 3s), while the lengths of the multi-step prediction are set
as 5, 10, 15 and 20 frames (0.5s, 1s, 1.5s and 2s). All pairs of
observation and prediction with limited horizon are randomly
selected from the full length of trajectories.

C. Evaluation Metrics and Baselines

According to [26], the following metrics are selected to
measure the performance and four baseline methods are cho-
sen for comparison.

1) Metrics: In the IER module, the accuracy of the recog-
nition for interactive events is calculated to measure the
performance of our model:

vazl di
N

where a; represents whether the recognition of interactive
" instance is accurate at time ¢. a! = 0 stands

Accuracy = (22)

events for i
for a correct recognition and a/=1 stands for a wrong one. N
is the total number of samples. In the training process, N is
the number of all training samples, while N is the number of
test samples in the process of validation. Samples for training
and testing are selected by cross validation (CV).

Following [26], in the TP module, the average displacement
error (ADE) and the final displacement error (FDE) are chosen
as evaluation metrics.

Average Displacement Errors (ADE): ADE is the average
Euclidean distance errors between all predicted positions and
ground truth positions, which is formulated as follow.

N Lobs TIpred i ~iN2 i ~iv2
i=1 Lutops+1 (x; = X))+ Oy — 31
N * fpred

Final Displacement Errors (FDE): FDE is the mean Euclid-
ean distance errors between final predicted positions and
ground truth locations, which can be formulated as:

N - ") > . N 5
Zi=1 \/(xtlpred - x;pred) + (y;pred - ytlpred)
N

ADE = (23)

FDE = (24)
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Fig. 6. Comparative results of riders for IER (a) The baseline method:

Trafficpredict GNN; (b) The proposed method: Hierarchical GNN.

where (x/,y!) and (!, $!) are ground truth and predicted
locations of the i observed instance at time 7. N is the total
number of samples.

2) Baseline Methods: In order to show the improvement of
the recognition and the prediction, our framework is compared
with these models below:

Social LSTM (SL): The SL proposes the social pooling
method, which accounts for neighbouring crowds within cer-
tain regions [26].

Social Attention (SA): It is a model predicting trajectories
for crowds, considering spatial relations of pedestrians with
attention mechanism [46].

Basic LSTM: A LSTM with an input and an output embed-
ding layer [47].

TrafficPredict GNN: A graph neural network considering
different types of traffic participants [39].

D. The Performance of IER Module

The proposed framework in this paper is composed of two
modules. The output of IER module influence the performance
of framework. Before the framework is verified by the output
of TP module, we firstly test the performance of the IER
module in the recognition of interactive events.

1) Results: Fig.5 and Fig.7 present the variation of loss in
the training process. The results in two figures can reflect
the convergence of the model with the increase of epochs.
If the value of loss increases slightly after several epochs,
the model will be considered as a convergent condition. In this
research, the number of epochs is set to 20 for the comparative
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Fig. 7. The variation of loss in multi-step prediction of trajectories.

study in the training process. After 20 epochs, the proposed
framework reaches the condition of convergence and obtains
the best results in comparative experiments. In other interactive
scenarios or datasets, the number of training epochs for
proposed framework depends on the variation of training loss
and the requirement in the performance, which may differ from
selected parameters in this experiment. Fig.5 presents the vari-
ation of recognition accuracy with epoch number increasing
from 1 to 20 in the training process. At epoch 5, the accuracy
of five methods are 83.2%, 78.1%, 65.3%, 62.8% and 61.2%
for the proposed framework, GNN, SA, SL and basic LSTM,
respectively. After 20 epochs, the proposed framework obtains
the best performance and increases steadily, which reaches the
condition of convergence. It indicates that the IER module of
the proposed framework outperforms the baseline methods in
the accuracy.

As for the application on intelligent vehicles, the framework
can online generate results of the recognition and the predic-
tion with one offline training process. In the testing process,
the proposed framework can apply the trained parameters
to generate predicted results and do not need to be trained
for the next sample. The time consumption of the trajectory
prediction in the process of the test and validation are detailed
in experiments (Table VI and Table VII).

Table IV shows comparative results with the four baseline
methods. The IER module of the proposed framework obtains
the best performance with different lengths of input trajecto-
ries. The accuracy of SA and SL are slightly lower than that of
IER module while basic LSTM gets the lowest accuracy in the
comparative experiment. The difference between Trafficpredict
GNN and the IER module in the proposed framework is
the selection of the predicted length. For the recognition of
interactive events, one-step prediction is realised by the X-to-
1 LSTM in the proposed framework, while Trafficpredict GNN
generates the sequential result by the multi-step prediction.
The results in Table IV indicate that the one-step in the IER
module of the proposed framework outperforms Trafficpredict
GNN in the recognition of interactive events.

Confusion matrices for the proposed framework and Traf-
ficpredict GNN are presented in Fig.6, which illustrates the
detailed recognised results of riders. The result is generated
from 35132 samples in the training set, including 7 different
interactive events for riders (cyclists and motorbikes). The
numbers of class 1~7 stand for interactive events: riding away
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TABLE IV

THE COMPARATIVE RESULTS FOR RECOGNITION OF INTERACTIVE EVENTS

Metric  Participant Observation LSTM SL SA Trafficpredict ~ Hierarchical GNN
GNN (Proposed)
10 0.95 0.94 0.95 0.97 0.99
Pedestrian 20 0.66 0.89 0.91 0.96 0.98
30 0.58 0.85 0.89 0.94 0.98
10 0.82 0.93 0.92 0.96 0.97
Rider 20 0.64 0.87 0.89 0.95 0.98
Accuracy 30 0.53 0.81 0.83 0.95 0.96
10 0.92 0.93 0.92 0.95 0.97
Vehicle 20 0.62 0.84 0.86 0.93 0.97
30 0.59 0.80 0.82 0.93 0.94
10 0.89 0.93 0.93 0.96 0.98
Total 20 0.63 0.86 0.88 0.96 0.98
30 0.61 0.83 0.84 0.93 0.96
Average 0.71 0.87 0.88 0.95 0.97
TABLE V
THE COMPARATIVE RESULTS FOR MULTI-STEP PREDICTION OF INTERACTIVE TRAJECTORIES
Metrics Agents LST™M SL SA Trafficpredict  Hierarchical GNN
GNN (Proposed)

Pedestrian 0.27 0.14 0.13 0.12 0.06
Rider 0.38 0.14 0.13 0.14 0.09
ADE[m] Vehicle 0.38 0.14 0.12 0.09 0.09
Total 0.48 0.16 0.15 0.12 0.07
Average 0.38 0.15 0.13 0.12 0.07
Pedestrian 0.39 0.25 0.24 0.21 0.09
Rider 0.57 0.22 0.21 0.20 0.13
FDE[m] Vehicle 0.56 0.18 0.17 0.18 0.13
Total 0.61 0.24 0.22 0.20 0.09
Average 0.44 0.22 0.21 0.20 0.11

and getting closer, riding up and getting closer, riding away
and getting farther, crossing quickly from left, crossing quickly
from right, central separation area of the road (lines or physical
materials) and stopping. Interactive events provided by BLVD
dataset cover most of interactions between riders and ego
vehicle. As for class 1~7, compared to Trafficpredict GNN,
the proposed hierarchical framework improves the accuracy
of the recognition by 2.9%, 2.7%, 3.0%, 3.3%, 3.4%, 2.9%,
and 3.3%, respectively. The proposed framework obtains the
highest improvement in the recognition of class 5 (crossing
quickly from left). The main reason is that interactive event
(class 5, crossing quickly from left) is a common and familiar
manoeuvre in the urban traffic scenario and easier to be
recognised by the X-to-1 LSTM. According to the comparative
result, the proposed hierarchical GNN obtains a higher accu-
racy for each class compared to Trafficpredict GNN, which
shows the best performance among the four baseline methods.

2) Analysis: As mentioned above, the proposed framework
achieves the best performance in the recognition of inter-
active events. In baseline methods above, basic LSTM is a
general neural network without social pooling and attention
mechanism, which cannot consider the information of the
surrounding traffic participants and influence of interaction.
Although SL can encode interactions between the ego vehicle
and surrounding vehicles by social pooling and attention
mechanism, the relationship between traffic participants is not

defined explicitly and different types of traffic participants
are not considered individually. Considering the two issues
above, in the X-to-1 GNN-based recognised model of the [ER
module, the instance layer and category layer are developed
based on the graph structure. The explicit definition of nodes
and edges and individual models of traffic participants with
different types improves the performance of IER module.

E. The Performance of the Proposed Hierarchical Framework

After the comparative study and comprehensive analysis of
the IER module, in this part the integral framework is verified
in the multi-step prediction of trajectories. Similarly, in Fig.7,
the variation of loss value is presented with the number of
epochs increasing from 1 to 20. The lower loss value indicates
the better performance in the training process, because the
loss is valued by the negative log Likelihood. Compared to
three baseline methods at epoch 5,10,15 and 20, the loss
of the proposed hierarchical framework decreases rapidly
and obtain the lowest loss value, which verifies the same
conclusion in Fig.5. At epoch 20, the proposed framework
reaches the convergence and loss values of other baseline
methods are listed as follows: —4.64 (proposed framework),
—4.55 (GNN), —4.09 (SA), —3.98 (SL) and —3.51 (basic
LSTM). The variation and final results of loss values indicate
that the proposed framework outperforms baseline methods in
the convergent speed and accuracy. The variation of 20 epochs
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weight in the prediction of interactive behaviours. By adding
the attention mechanism in SL, SA improves the performance

of SL by reducing 13.3% and 4.5% for ADE and FDE,

respectively. Compared to above baseline methods, the pro-
posed hierarchical framework obtains the best results in ADE
and FDE for each type of traffic participants and reduces
41.7% (ADE) and 40.9% (FDE) compared to GNN without
the hierarchical structure.

Methods Frames/per second FDE (m)
SL 16.2 0.22
SA 17.3 0.21
Trafficpredict GNN | 12.6 0.2
Hierarchical GNN | 10.7 0.11
(Proposed)

TABLE VII

COMPARATIVE RESULTS FOR THREE SELECTED SCENARIOS

2) Analysis: According to the analysis and comparison
presented above, the proposed framework outperforms other
baseline methods in terms of ADE and FDE. In SL, although

trajectories of participants and the influence between partici-
pants are considered in the prediction by conventional layers,

interactions in spatial-temporal space and different types of
traffic participants are not modelled specifically, which are
solved by the instance layer and category layer in the pro-
posed framework. In the heterogeneous urban scenario, traffic
participants with different types have different motion pat-

terns [39], in SL and SA, all traffic participants are modelled
indiscriminately, which causes a decline in the accuracy of
prediction. The proposed framework solves this problem by
adding a category layer for each type of participant.
Compared to GNN including the category layer, which is

ID Methods Recognition ADE FDE(m) Average
accuracy of  (m) error in
IER 1s
#1 LSTM 0.71 0.63 0.71 0.58
SL 0.83 022 0.32 0.17
SA 0.85 023 030 0.19
TrafficPredict  0.89 0.19 0.17 0.14
Proposed 0.91 0.11  0.15 0.12
#2 LSTM 0.68 0.58 0.77 0.59
SL 0.87 024 041 0.18
SA 0.79 0.18 0.35 0.20
TrafficPredict  0.95 0.14 0.24 0.12
Proposed 0.96 0.11 0.18 0.10
#3 LSTM 0.73 0.67 0.92 0.54
SL 0.82 030 041 0.27
SA 0.84 0.31 0.28 0.28
TrafficPredict 0.96 022 021 0.15
Proposed 0.98 0.13  0.17 0.13

an end-to-end prediction model, labelled interactive events
for each surrounding traffic participant are considered in the
IER module of the proposed framework. The hierarchical
structure firstly recognises interactive events, and combines

presented in Fig.7 illustrates the convergence of the training
process. Meanwhile, the time cost of the baseline methods in
the trajectory prediction are detailed in experiments.

1) Results: The variation of loss in the multi-step prediction
of trajectories is shown in Fig.7. Comparative results for multi-
step prediction of trajectories are shown in Table V. The
number of historical observations and the length of multi-step
prediction are 30 frames (3s) and 10 frames (1s), respectively.
In four baseline methods, the basic LSTM has the worst
performance in ADE and FDE compared to other methods.
The average error of SL is lower than basic LSTM by 60.5%
and 50.0% for ADE and FDE, respectively. By combining
the social pooling with basic LSTM, SL predicts trajectories
according to the information of the surrounding participants.
However, in SL, surrounding participants share the same

recognised results and historical trajectories as the input to
TP module. Experimental results indicate that the proposed
hierarchical framework outperforms trafficpredict GNN (with
category layer). The proposed hierarchical framework com-
bines advantages of manoeuvre-based and interaction-aware
methods, which improves the performance in the prediction
compared to trafficpredict GNN.

In order to verify the performance of time consump-
tion for interactive aware methods, comparative results
in the efficiency of multi-step prediction are detailed
in Table VI. Results of time consumption for four
social-aware methods remain in the same order of magnitude
(10.7~17.3 frames/per second). The comparison for error and
efficacy of prediction is presented in Table VI. Compared
to three interactive aware baseline methods, the proposed
hierarchical GNN can obtain the best performance in the
prediction with an acceptable time consumption.
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Comparative results for the prediction of trajectories are illustrated in camera-based corresponding 2D images. The prediction of trajectories in

different scenarios are presented in nine pictures. The ground truth (GT) is drawn in green and the prediction results of baseline methods (GNN, LSTM,
SL and SA) are shown with different lines. (a): Passing a zebra crossing with pedestrians and riders. (b) and (g): A rider and a vehicle pass each other side
by side. (c): A rider travels across in front of ego vehicle. (d): A vehicle turns around in front of ego vehicle. (e): A pedestrian and a rider cross the road in
parallel. (f): A rider overtakes a vehicle. (h): An intersection with three types of participants. (i) A pedestrian walks through the traffic.
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Fig.8 shows distributions of ADE and FDE for differ-
ent methods. The number of the historical observations and
the length of multi-step prediction are 30 frames (3s) and
10 frames (1s), respectively. For ADE, the prediction error of
the proposed framework mainly distributes in 0.03~0.06 m,
while the error of four baseline methods mainly distribute in
0.09~0.12 m (GNN), 0.12~0.15 m (SA), 0.12~0.15 m (SL)
and 0.45~0.48 m (Basic LSTM), respectively. Comparative
results in the error distribution illustrate that the proposed
framework obtains the best performance.

The prediction of trajectories in different scenarios are
presented in Fig.9. Nine pictures in Fig.9(a)-(i) show typical

Lorea

Comparative results of ADE and FDE with different observed and predicted length. (Top: ADE; Bottom: FDE) The unit of ADE and FDE is

urban traffic scenarios containing traffic participants which
are not strictly following rules. Although the front-facing
camera cannot fully capture the whole scenario, the proposed
framework performs reasonable prediction of trajectories and
is close to ground truth.

To verify the performance of the proposed framework in
different conditions, Fig.10 presents the results with different
length of observation and multi-step prediction. The lengths
of observations include 1s (10 frames), 28 (20 frames), 3s
(30 frames), while the lengths of the multi-step prediction
includes 0.5s (5 frames), 1s (10 frames), 1.5s (15 frames)
and 2s (20 frames). The comparative results illustrate that the
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variation of observation-prediction pair cannot influence the
accuracy of ADE and FDE compared to baseline methods.

In order to test the performance of the proposed framework
in different scenarios, an additional experiment is conducted
in three typical driving scenarios. Comparative results are
detailed in Table VII. The number of historical observations
and the lengths of multi-step prediction are 30 frames (3s)
and 20 frames (2s), respectively. The three selected scenarios
are driving straight in highway (scenario #1), overtaking in
highway (scenario #2) and driving through the intersection
(scenario #3). Testing results include recognition accuracy of
the IER module, ADE and FDE. Table VII shows that the
proposed framework obtains the best performance compared
to the four baseline methods. In the highway scenario (sce-
nario #1 and scenario #2), the hierarchical GNN can get
the highest accuracy for recognition and the lowest errors
for the prediction. Even in the intersection (scenario #3),
a typical challenging scenario for trajectory prediction, the pro-
posed framework can outperform Trafficpredict GNN and
other social-aware methods. Besides the comparative study
of ADE and FDE, a detailed comparison for the predicted
error in 1s is also presented in three typical scenarios. The
error in 1s can describe the relative error to time, which
can be applied to analyse the comparative results from a
new point of view. The results indicate that the proposed
framework can obtain the best performance in the fix predicted
time (1s).

V. CONCLUSION AND FUTURE WORK

In this paper, considering interactive behaviours between
heterogeneous traffic participants, a hierarchical GNN-based
framework is proposed to predict interactive events and trajec-
tories of surrounding traffic participants with different types.
The proposed framework combines the manoeuvre-based and
interaction-aware methods by IER and TP modules to make
multi-step prediction based on recognised events. A category
layer is applied in the framework to learn similar characteris-
tics for traffic participants with the same type.

The proposed framework is verified using BLVD dataset,
which contains explicit labels for interactive events and con-
tinuous trajectories for traffic participants. In the IER mod-
ule, the framework is applied to recognise interactive events
with the ego vehicle by considering the interaction of all
participants. In the TP module, the framework is tested by
predicting multi-step trajectories for heterogeneous partici-
pants. Comparative results with the state-of-the-art methods
show that it presents a higher accuracy in recognition and a
lower ADE/FDE in the multi-step prediction. The improve-
ment is due to modeling the interaction of traffic partic-
ipants explicitly with the combination of interaction-aware
and manoeuvre-based approaches. Meanwhile, the proposed
hierarchical framework is a general method, which can be
applied in different scenarios with interactive behaviours.

The research in this paper focuses on interactions with
dynamic traffic participants. The influence of static obstacles
and road information will be considered and modelled in the
framework in the future work.
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