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ArrivalNet: Predicting City-wide Bus/Tram Arrival
Time with Two-dimensional Temporal Variation

Modeling
Zirui Li, Graduate Student Member, IEEE, Patrick Wolf, Meng Wang, Senior Member, IEEE

Abstract—Accurate arrival time prediction (ATP) of buses
and trams plays a crucial role in public transport operations.
Current methods focused on modeling one-dimensional temporal
information but overlooked the latent periodic information within
time series. Moreover, most studies developed algorithms for ATP
based on a single or a few routes of public transport, which
reduces the transferability of the prediction models and their
applicability in public transport management systems. To this
end, this paper proposes ArrivalNet, a two-dimensional temporal
variation-based multi-step ATP for buses and trams. It decom-
poses the one-dimensional temporal sequence into intra-periodic
and inter-periodic variations, which can be recast into two-
dimensional tensors (2D blocks). Each row of a tensor contains
the time points within a period, and each column involves the time
points at the same intra-periodic index across various periods.
The transformed 2D blocks in different frequencies have an
image-like feature representation that enables effective learn-
ing with computer vision backbones (e.g., convolutional neural
network). Drawing on the concept of residual neural network,
the 2D block module is designed as a basic module for flexible
aggregation. Meanwhile, contextual factors like workdays, peak
hours, and intersections, are also utilized in the augmented
feature representation to improve the performance of prediction.
125 days of public transport ta from Dresden were collected for
model training and validation. Experimental results show that the
root mean square error, mean absolute error, and mean absolute
percentage error of the proposed predictor decrease by at least
6.1%, 14.7%, and 34.2% compared with state-of-the-art baseline
methods.

Index Terms—Tram/bus arrival time, time series forecasting,
temporal variation modeling.

I. INTRODUCTION

As urban populations swell and individual car ownership
rises, traffic congestion, energy consumption, and air pollution
pose increasing challenges to urban transport systems. Public
transport is one of the promising options to address the issues
and achieve sustainable transport [1, 2]. However, existing
public transport (PT) systems (buses, trams, subways, etc.)
often suffer from issues of low reliability and prolonged delays
in arrival times [3, 4]. [5] indicated that users were signifi-
cantly concerned with the accuracy of travel and arrival time
predictions (ATP), which greatly influences their travel choices
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and experiences. Fig. 1 illustrates the multi-step bus/tram ATP.
In this scenario, when the bus/tram is on Link 1 (between stop
0 and stop 1) and has been delayed 55 seconds, the passengers
in the future stops would like to know when will the bus/tram
arrive at stops 3-5?

Accurate ATP not only facilitates the rescheduling and
dispatching of public transport for operators but also helps
passengers make informed decisions regarding their traveling
plans and mode choices[6, 7]. It needs to take into account
of many influencing factors: the traffic situation (e.g., traffic
volume and speed), platform facility design, passenger de-
mand, the propagation of delay, traffic signals, etc [8–11]. All
elements above lead to the complexity and difficulty in the
accurate ATP. To cope the issues, numerous solutions have
been proposed to predict the arrival time [12, 13], which can
be divided into three categories: state estimation-based and
statistical learning-based and deep learning-based methods. In
the sequel, we survey the main methods in each category to
identify the knowledge gaps.

State estimation-based methods treat the public transport
operation process as a dynamic system and the kinematic
state of public transport vehicles as the system state to be
estimated. To this end, popular state estimation approaches of
Kalman filter (KF) and Bayesian networks from the systems
engineering domain can be applied for ATP [14–16]. KF is
an efficient state estimation method, as it can update the
linear system state when new observations become available
continuously. [17] proposed a KF-based model for vehicle
arrival/departure prediction using real-time and historical data.
It makes optimal estimation of the location and speed of
the vehicle based on the streaming data from the automatic
vehicle location (AVL) system. [16] formulated a spatial KF to
detect the unknown order of spatial dependence, and then learn
its linear, non-stationary spatial correlations for this detected
order. However, the performance is limited by the linear
formulation of the state-space model. [18] proposed a hierar-
chical Bayesian framework for bus dwell time prediction with
minimal historical data. It made predictions using a small set
of continually updated model parameter distributions, which
was inherently adaptive to the time-varying duration of dwell
time. The Bayesian architecture also provided the confidence
in dwell time estimation to support the decision-making of
scheduling under uncertainty. In [19], a Bayesian Gaussian
mixture model (GMM) was developed to generate probabilistic
forecasting of bus travel time. It characterizes the strong
dependencies between adjacent buses (e.g., correlated speed
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Fig. 1: The problem illustration of multi-step bus/tram arrival time prediction. Bottom left: The city-wide public transport
link delay distribution of tram in Dresden, Germany. (A link is the route segment between adjacent stops.) Top: When the
bus/tram is on Link 1 (between stop 0 and stop 1) and has delayed 55 seconds, the potential passengers in the future stops are
concerned on when the bus/tram will arrive at stop 3/5? Bottom right: The analysis from the two-dimensional perspective.
In a sequence of tram delay information with 39 stops, the temporal pattern of falling and fluctuation are labelled in red and
green, respectively.

and smooth variation of headway). In the inference stage, an
efficient Markov chain Monte Carlo (MCMC) algorithm was
applied for probabilistic prediction. Furthermore, a conditional
forecasting model for bus travel time and passenger occupancy
was proposed with a similar strategy [20]. The advantage of
state estimation-based methods is their ability to explicitly
model the relationships among historical observations, noise,
and uncertainties. Additionally, these methods stand out for
their efficiency, requiring only a minimal dataset to operate
effectively. However, the relationship between some factors
and ATP is nonlinear (e.g., weather conditions), making it
daunting to formulate these implicit and intertwined relation-
ships explicitly. Meanwhile, for long-term predictions, the
influence between nonadjacent samples and the propagation
of delays in time series becomes the bottleneck of the state
estimation-based methods [8].

Statistical learning-based approaches for public transport
ATP aim at capturing complex public transport modalities
and nonlinear relationships inherent in the collected data from
the perspective of statistics [8, 9]. [21] integrated support
vector machine (SVM) and genetic algorithm to search the best
parameters in predicting the bus arrival time in various traffic
conditions. [22] proposed a k-nearest neighbor (k-NN)-based
framework for bus arrival time estimation, which outperformed
simple artificial neural networks (ANNs). In [23], ANN, KF, k-
NN, and linear regression (LR) were adopted for the bus ATP

at the same bus stop but with different routes using real-world
data. Compared with the bus information of the same route,
multi-source from several routes can provide more benefit in
the timeliness and reliability of the information. Meanwhile,
the performance of several prediction methods are assessed
and a valuable insight for algorithm selection was provided,
which guided the further development of travel time predictors.
In [9], various statistic machine learning algorithms were
compared and evaluated. It demonstrated that real-time traffic
information from taxis could improve the performance of ATP
based on bus GPS data under both normal and abnormal traffic
conditions. [24] integrated KF and k-NN algorithm for bus
travel time estimation. It applied k-NN algorithm to capture
the related input features and then combined exponential
smoothing technique with a recursive estimation scheme based
on KF to generate the prediction.

The above methods primarily focus on one-step prediction
of public transport arrival time, which only consider the ATP
of the next adjacent stop. The long-term multi-step prediction
is also crucial for the public transport management system and
it can provide more useful reference information for decisions
of transport operators and travelers. With the development
of deep neural networks (DNNs), DNN-based time series
prediction methods were widely used in ATP. [8] proposed
combining convolutional Long short-term memory (ConvL-
STM) with ensemble learning and employing the eXtreme
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Gradient Boosting (XGBoost) statistical method to model het-
erogeneous traffic characteristics, thereby achieving prediction
of bus arrival times under various traffic conditions. [25]
developed a KF-LSTM (Kalman filter-LSTM) deep learning
method to predict bus travel time. With the statistical analysis,
it was found that the KF-LSTM approach can outperform the
ensemble learning strategy. [26] proposed a traffic pattern-
centric segment coalescing framework to learn heterogeneous
traffic patterns and incorporated LSTM in each cluster to
predict the bus travel time. Besides investigating the interaction
of arrival time for public transport on a single route, [27] de-
signed a parallel Gated Recurrent Unit (GRU) network-based
method to capture the spatial correlation among bus stops on
different lines under the condition of limited data. In summary,
with the advancement of data collection technologies (e.g.,
AVL data), deep learning-based methods demonstrate signif-
icant superiority in capturing nonlinear relationships, time
series prediction, and multi-sources heterogeneous information
fusion.

However, there are two inherent shortcomings for current
solutions. Firstly, most methods for multi-step ATP focus
on exploring the relationships between different time points
alongside the one-dimensional temporal variation. Here, the
one-dimensional variation refers to considering changes in
features over a continuous duration. Specifically, for the public
transport ATP, it involves analyzing the information at dif-
ferent stops on a specific route. While one-dimensional time
series analysis helps capture continuity, periodicity and trends,
real-world time series often have intricate temporal patterns
(e.g., rising, falling, etc.). These different patterns are always
mixed, overlapped with each other and their characteristics
are obscured deeply in time series [28–30]. As shown in the
bottom right of Fig. 1, for a sequence of public transport
arrival information with 39 stops, the temporal pattern of
falling and fluctuation are hidden in the time series, which are
labeled in red and green, respectively. These similar patterns
are difficult to be captured by the one-dimensional based
algorithms. Therefore, for the multi-step ATP, the modeling
of multiple temporal variations is required to model the
connection between similar temporal patterns. Secondly, most
of the existing studies only used the data collected from one
single or few routes [31, 32], which are rather limited [33].
It reduces the predictive capability for newly added, modified,
or unmodeled routes.

To address these issues, in this paper, a two-dimensional
temporal variation-based bus/tram ATP model is proposed,
which is termed ArrivalNet. It transforms one-dimensional
time series into two-dimensional tensors to represent the intra-
period and inter-period interactions. It can capture the implicit
periodic information in the multi-step sequential prediction
of arrival time. Meanwhile, a large scale city-wide dataset is
constructed for validation [34]. The primary contributions of
this paper are summarized as follows:

• A two-dimensional temporal variation-based bus/tram
ATP model that can capture the intra-period and inter-
period information in time series is proposed;

• The proposed model is validated on city-wide public
transport data, which includes bus/tram operational data

from 125 days.
The remainder of this paper is organized as follows. The

problem of public transport ATP is formulated in Section II.
Then, details of ArrivalNet are presented in Section III.
Section IV shows the experimental setting and the comparison
results. Finally, Section V presents the conclusion and future
work.

II. PROBLEM FORMULATION

This paper focuses on the multi-step bus/tram ATP. The
problem formulation of ATP is divided into three parts: the
description of the ATP problem, the construction of variables,
and the series stationarization.

A. The formulation of bus/tram arrival time prediction

Following the formulation in [19], in this work, the predic-
tion of arrival time T a

i at stop i is converted to the prediction
of delay T d

i relative to the scheduled arrival time T s
i , which

implicitly includes the dwell time at stop i−1 in the travelling
time between stops i− 1 and i.

T a
i = T d

i + T s
i (1)

With (1), the multi-step ATP is transformed into the sequential
prediction of delay in future Nf stops based on the information
in the past Np stops, which can be formulated as follow:

T̂d
i+1:i+Nf

= fθ(F
temporal
i−Np+1:i,F

static) (2)

T̂a
i+1:i+Nf

= T̂d
i+1:i+Nf

+Ts
i+1:i+Nf

(3)

where T̂a
i+1:i+Nf

, T̂d
i+1:i+Nf

and Ts
i+1:i+Nf

are predicted
arrival time, predicted delay time and scheduled arrival time
for stops i+ 1 to i+Nf , respectively. Ftemporal

i−Np+1:i are temporal
features in the past Np stops and Fstatic is the static contextual
information, which can be flexibly designed and embedded as
the input. fθ is the prediction model with trainable parameters
θ.

B. The construction of variables and series stationarization

Considering that this work aims to develop a generic
bus/tram ATP model, at each stop i, the index of the specific
line is not considered as the input feature. At stop i, the
temporal features Ftemporal

i−Np+1:i = [Fi−Np+1, ...,Fi]
⊤ ∈ RNp×C

are the serial combination of information Fj (∀j ∈ [i−Np +
1, i], j ∈ Z) in each past stop:

Fj = [St
j , T

t
j , T

d
j , Ij , T

t
j ] (4)

where C is the length of feature space. St
j is the traveling

distance between stop j and previous stop j − 1, which is
highly related to the arrival time and can be obtained from the
route of the specific line. T t

j is the scheduled traveling time
between stop j and previous stop j − 1 in the daily updated
timetable. T d

j is the delay at stop j. It is calculated from the
difference of timetable and real-time arrival information. Ij is
is a boolean value indicating whether there is a traffic light
between stop j and previous stop j − 1. T

t
j is the average of
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Fig. 2: The overall framework of the proposed ArrivalNet. It consists of five parts: feature embedding, fast fourier transform
(FFT) from time to frequency domain, reshape from 1D tensor to 2D image like tensor, vision backbone (CNN-based or
Transformer-based) and adaptive aggregation. Note that two possible algorithms are shown, but only one is enough for feature
extraction.

T t
j at stop j in collected data. St

j and T t
j are daily updated

from the centralized data collection system, which take into
account of stop and route changing caused by adjustment in
road infrastructure. The average travel time is calculated by
statistically aggregating the time on the link between stop j−
1 and j. A significant discrepancy between the actual travel
time and the average travel time may indicate the presence of
exceptional circumstances affecting the delay.

C. Series stationarization

As for the data collected from the public transport system,
the sequences always reflect non-stationarity, which is char-
acterized by the continuous change of joint distribution over
time. This reduces the predictability of time series. In [35],
an effective normalization-and-denormalization strategy was
proposed to normalize instances with learnable parameters in
the transformation from raw to normalized time series. It al-
leviated the temporal distributional shift by learning the affine
transformation of input in the normalization and restoring
the corresponding output in the denormalization. From the
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perspective of ATP, the shift of the temporal distribution is
the variation of input features’ joint distribution along the tem-
poral dimension. For example, the corresponding relationship
between average link travel time and distance may change
along the same public transport line. [36] experimentally
demonstrated that the algorithm also worked without learnable
parameters. In normalization, it standardizes instances with
varied means and variances. Then, the prediction is recovered
with the same statistical properties in denormalization.

For the original input sequence Ftemporal
i−Np+1:i, apply the

normalization and de-normalization along the temporal di-
mension to obtain the normalized input Ftemporal

i−Np+1:i

′
=

[Fi−Np+1
′, ...,Fi

′]⊤ ∈ RNp×C :

µ =
1

Np

i∑

j=i−Np+1

Fj (5)

σ2 =
1

Np

i∑

j=i−Np+1

(Fj − µ)2 (6)

Fj
′ =

1

σ
⊙ (Fj − µ) ∀j ∈ [i−Np + 1, i], j ∈ Z (7)

where µ and σ ∈ RC×1 are mean and standard deviation of
time series. ⊙ is the element wise product. The normalized
input feature Ftemporal

i−Np+1:i

′
= [Fi−Np+1

′, ...,Fi
′]⊤ ∈ RNp×C

is combined with Fstatic as F1D,i ∈ RNp×(C+Nc), where
Nc is the feature dimension of contextual information. To
simplify the expression, F1D,i is substituted with F1D. In the
following parts, F1D is the feature representation at a specific
stop. Then, F1D is sent to the prediction module to generate
the estimation T̂d′

i+1:i+Nf
= [T̂d′

i+1, ..., T̂
d′
i+Nf

]⊤ ∈ RNf×C .
Then, the de-normalization is operated for final multi-step
predictions T̂d

i+1:i+Nf
= [T̂d

i+1, ..., T̂
d
i+Nf

]⊤ ∈ RNf×C :

T̂d
k = σ ⊙ T̂d′

k + µ ∀k ∈ [i+ 1, i+Nf ], k ∈ Z (8)

After the de-normalization, the outputs have the same feature
space as the original inputs. The two-step operations can
reduce the influence of non-stationarity in time series.

III. METHODOLOGY

The proposed ArrivalNet can be divided into five parts:
feature embedding, fast fourier transform (FFT) from time to
frequency domain, reshape from 1D tensor to 2D image like
tensor, vision backbone for feature extraction and adaptive
aggregation, which are shown in Fig. 2. For the first part,
the normalized input feature is expended from the original
feture space to the model space, which increases the learning
ability of model. The last four parts form the 2D block. It
is the basic module of ArrivalNet. In the FFT, the sequential
input in the time domain is converted into frequency domain
with different frequencies. Then, the 1D tensor is reshaped to
various 2D tensors according to the frequencies and periods
from FFT. The useful information in two-dimensional image
like features is captured by generic vision backbone (CNN
and Swin Tranformer). the parameters from the periodic
decomposition are designed to adaptively aggregate features
of different periods.

A. Feature embedding

The normalized feature Ftemporal
i−Np+1:i

′
is combined with Fstatic

as the final input sequence F1D ∈ RNp×(C+Nc). Time series
data is inherently sequential, with the order of Np data points
carrying significant information about temporal dynamics.
Unlike recurrent neural network (RNN)-based models that
intrinsically understand sequence order, the two dimensional
tensor of 2D block doesn’t have a built-in mechanism to
recognize the order of inputs. The positional encoder (PE)
provide a way to incorporate this crucial information by adding
a unique positional signal to each data point in the sequence,
enabling the model to recognize and utilize the order of
observations [37]. Meanwhile, to better understand and capture
complex patterns in multivariate time series, including non-
linear relationships and interactions between different features,
a value encoder (VE) is applied to expand features to a high-
dimensional model space dmodel and increase model’s learning
ability [38]. Wtih Fstatic from the series stationarization, the
formulation of PE and VE are shown as follow:

F
(pos,2j)
PE = sin

(
pos/(2Np)

2j/dmodel

)
(9)

F
(pos,2j+1)
PE = cos

(
pos/(2Np)

2j/dmodel

)
(10)

FVE = conv1D
(C+Nc)→dmodel

(F1D) (11)

X1D = Linear
Np→(Np+Nf )

(FPE + FVE) (12)

where j ∈ {1, ..., ⌊dmodel/2⌋} and pos ∈ {1, ..., ⌊Np⌋}. FPE ∈
RNp×dmodel is the unique positional values. FVE ∈ RNp×dmodel

is the encoded model features. conv1D is the one dimension
convolutional along the temporal dimension of F1D. It expend
the feature space from lower to higher dimension. Linear(·)
is the linear neural network to align the past sequence length
Np to full sequence length Np+Nf . In (12), the combination
of FPE and FVE is the element-wise sum. To the end, F1D is
encoded as X1D ∈ R(Np+Nf )×dmodel .

B. Fast fourier transform from time to frequency domain

It is well recognized that time series can be analyzed
from two perspectives: the time domain and the frequency
domain [39, 40]. The RNN-based and attention-based methods
focus on the modeling of temporal relationships in the time
domain, which is termed one-dimensional temporal varia-
tion [37, 41]. The periodic trends (e.g., daily, weekly, monthly)
can be reflected by the multi-periodic positional encoder [38].
However, some hidden periodic information may be neglected
(e.g. rising, falling, fluctuation). It involves establishing con-
nections between time points with the same time index across
different periods. Fourier analysis serves as a common tool
for transforming serial input from the time domain to the
frequency domain [42]. [29] designed a frequency-enhanced
block to capture these obscured variations by Fast Fourier
Transform (FFT). In [30], a similar strategy was used for
the transformation from one-dimensional to two-dimensional
tensors. In this work, FFT is selected as the tool to convert
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sequences from time to frequency domain. With the embedded
feature X1D, the process of FFT is expressed as:

A = FFT (X1D) (13)

{f1, · · · , fT
2
} = Avg (Amp (A)) (14)

where FFT(·) is the Fast Fourier Transform1 from the time
domain to the frequency domain and A comprises a series
of complex numbers, each representing the magnitude and
phase of frequency components within the sequence. Amp(·)
is the amplifying function of complex number and Avg(·) is
the mean of elements in the feature dimension. {f1, · · · , fT

2
}

is the obtained frequencies. Due to the conjugacy in the
transformed frequency domain, f∗ is only selected within
{1, · · · ,

⌊
T
2

⌋
}. Simply considering the effects of all frequen-

cies will lead to a decrease in prediction performance because
high-frequency changes in the sequence may be caused by
noise. To avoiding the noise from meaningless high frequen-
cies, only the most prominent k frequencies are chosen.

{f1, · · · , fk} = arg Topk
f∗∈{1,··· ,⌊T

2 ⌋}
(A) (15)

pi =

⌊
T

fi

⌋
i ∈ {1, · · · , k} (16)

where {f1, · · · , fk} is the frequency of kth period with length
pi and the unnormalized calculated amplitude is as follows:

ATop K = {Af1 , ...,Afk} (17)

C. Reshape from 1D to 2D image like tensor

Based on (16) and (17), for each frequency fj , j ∈
[1, k] j ∈ Z, the one-dimensional time serie X1D ∈
R(Np+Nf )×dmodel can be transformed and spliced into a tensor
Xj

2D ∈ Rfj×pj×dmodel . 2D means that the inter-periodic and
intra-periodic information is represented in Xj

2D. It is an

1FFT is implemented by Pytorch library: pytorch.org.

image-like tensor with the channel length dmodel. Each row
of the tensor contains the time points within a period, and
each column of it involves the time points at the same intra-
periodic index across various periods. Ideally, the relationship
of fj , pj , j ∈ [1, k] j ∈ Z is fj × pj = (Np+Nf ). However,
in some cases, (16) cannot be divisible integrally. A padding
operation is needed for X1D.

Xpadding
1D = Padding

pj ,fj

(X1D), j ∈ {1, . . . , k} (18)

Xj
2D = Reshapepj ,fj

(
Xpadding

1D

)
, j ∈ {1, . . . , k} (19)

where Padding(·) is applied to impute the feature with zeros
for successful reshape. Fig. 3 illustrates the process of padding
and reshape.

D. Vision backbone

Two popular deep-learning architectures, CNN and Trans-
former, are chosen for extracting features from the 2D tensors.
We remark that the proposed prediction model is generic and
allows the use of other architectures.

1) CNN-based feature extraction: For each element
Xj

2D j ∈ {1, . . . , k} in X2D, the first and second dimensions
represent the intra-periodic and inter-periodic information,
which is similar to the feature space of image in computer
vision. The frequency f , period p and dmodel dimensions are
corresponding to the height, width and channel dimensions in
an image. Therefore, the tensor X2D can be easily processed by
the parameter-efficient inception block and finally transformed
back to one-dimensional feature space [43]:

X̂j
2D = InceptionConv2d(X

j
2D), j ∈ {1, . . . , k} (20)

X̂j
1D = Reshape(X̂j

2D), j ∈ {1, . . . , k} (21)

where X̂j
2D ∈ Rfj×pj×dmodel is the tensor processed by

Inception(·) and X̂j
1D ∈ R(Np+Nf )×dmodel is the output feature

of the module. As shown in Fig. 4, in the parameter-efficient
inception block, kernels with different sizes operate the two
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Fig. 4: CNN-based feature extraction.
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Fig. 5: Swin Transformer-based feature extraction.

dimensional convolution along dimensions f ∗ p. All kernels
work parallelly and are summed together in the first layer.
Then, with a nonlinear actvation function, it is sent to the
second layer with the similar operation. By carefully designing
the relationship of kernel size and padding length in each layer,
the input and output of Inception(·) are tensors with same size,
which doesn’t influence the transformation from two to one
dimensional tensor.

From the analysis in Section III-B and III-C, the 1-
dimensional tensor obtained by feature embedding is trans-
formed into 2D tensor after FFT and padding processes.
For the designed information extractor within the 2D block,
besides employing a CNN-based inception model to extract
useful features from the image-like tensor, other popular vision
backbones can also be utilized. In this work, an attention-
based approach, named Swin Transformer, is applied to the
2D tensor.

A

B

C

B

C A

C

C C
B

B

local window partition 
in the first layer (5 

windows)

local window shifting
(12 windows)

2D tensor 
recombination

(6 windows)

mask window multi-
head self attention 

(mask W-MSA)

Fig. 6: The computationally efficient operation after the win-
dow shifting.

2) Attention-based feature extraction: In deep learning,
the development of Transformer has significantly enhanced
model performance in sequential analysis and natural language
processing (NLP) based on the attention mechanism. However,
for vision tasks, transformer-based models struggle to pro-
cess image information efficiently. The difficulty arises from
the high resolution of the image, while calculating attention
across all pixels is computationally prohibitive. To address
this issue, [44] proposed dividing the image into several non-
overlapping patches and extracting useful information through
a hierarchical structure. However, compared to CNN-based
methods, this approach struggles to establish connections
between adjacent pixels across different patches, and the
computation time increases quadratically with image size.
Inspired by the sliding operation in CNNs, [45] introduced
a local transformer method based on sliding windows, termed
Swin Transformer. It models adjacent pixels through the move-
ment of local windows, while its computational complexity
increases linearly relative to the image size. Therefore, in this
work, the Swin Transformer is employed to extract useful
information from image-like 2D tensors.

As illustrated in Fig. 5, we assume that the frequency and
period length of the 2D tensor are 4 and 6, respectively.
Compared to high-resolution images, the number of pixels in
a 2D tensor is relatively low. Hence, the patch size is set to 1
and each 2x2 local window contains only 4 pixels, and the 2D
tensor comprises 6 windows. After applying Window-based
Multi-head Self Attention (W-MSA) within local windows,
features from different local windows are recombined. The
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self-attention mechenism is formulated as follow:

Attention(Q,K,V) = Softmax
(

QK⊤
√
dmodel

)
V (22)

where Q,K,V ∈ RM2×dmodel are query, key and value,
respectively. M2 is the number of pixels (patches) in a local
window. In the self-attention, Q, K, V are same features.
To introduce cross-window connections while maintaining
efficient computation of non-overlapping windows, a shifted
window partitioning strategy is implemented. This involves
moving the windows in the 2D tensor starting from the top
left by the half size of a local window. In this case, it
will expand the number of local windows from 6 to 12.
To reduce the computational complexity, [45] proposed an
efficient computation approach based on the mask operation in
the attention mechanism, which is detailed in Fig. 6. It shifts
some partited windows to the opposite positions and make a
re-partition of 2D tensor. To aovid unreasonable connection
of pixels in the original 2D tensor, the mask matrices are
generated to block the relationship between non-connected
pixels. This efficient operation ensures that the computational
complexity remains consistent with that of the initial window
partition. The masked attention mechenism is formulated as
follow:

Mask Att(Q,K,V,M) = Softmax
(

QK⊤
√
dmodel

+M

)
V

(23)
where M ∈ RM2×M2

represents the mask matrix that is added
to the scores resulting from QK⊤. The masked element is set
to a large negative value. The shifting process and mask atten-
tion mechenism are collectively referred to as Shifting Window
multi-head Self Attention (SW-MSA). Based on W-MSA, SW-
MSA and the 2D tensor input Xj

2D j ∈ {1, . . . , k}, the entire
Swin Transformer consists of two layers and is computed as:

X̂j,1
2D = W-MSA(LN(Xj

2D)) +Xj
2D (24)

Xj,1
2D = MLP(LN(X̂j,1

2D )) + X̂j,1
2D (25)

X̂j,2
2D = SW-MSA(LN(Xj,1

2D )) +Xj,1
2D (26)

Xj,2
2D = MLP(LN(X̂j,2

2D )) + X̂j,2
2D (27)

where LN(·) and MLP(·) are layernorm and multi-layer pe-
ception, respectively. X̂j,1

2D and X̂j,2
2D are the output of local

window attention. Similar to (21), the output of second layer
Xj,2

2D can be transformed back to one-dimensional tensor.

E. Adaptive output aggregation

Based on the useful feature extraction of vision backbone,
the formulation of multi-step ATP is converted into the feature
extraction from the image-like tensor. Inspired by the well-
developed theory of residual connection between different
layers [46], the developed 2D block, are stacked and connected
by the residual learning framework. If the ArrivalNet consists
of L layers, for the lth l ∈ {1, . . . , L} layer, the residual
connection is formulated as:

Xl
1D = f2D

(
Xl−1

1D

)
+Xl−1

1D (28)

2D block

output

2D block

input

2D block

Fig. 7: The residual connection of 2D blocks.

where f2D(·) is the 2D block. The residual connection is illus-
trated in Fig. 7. The processed outputs Xj

2D j ∈ {1, . . . , k}
need to be aggregated adaptively based on the normalized
weight ATop K = {Af1 , ...,Afk} in periodic decomposition.

ÂTop K = Softmax(ATop K) (29)

X1D =

k∑

j=1

Afj × X̂1D (30)

where Softmax(·) is the normalization of weight. X1D ∈
R(Np+Nf )×dmodel is the output of 2D Block. And the estimation
T̂delay

i+1:i+Nf
of the proposed ArrivalNet is obtained by aligning

dmodel back to one and cut the last Nf elements in the temporal
dimension, which means only predicting delays.

T̂delay
i+1:i+Nf

= Trun(Linear
dmodel→1

(X1D)) (31)

where Linear(·) is the linear neural network to embed the
feature space from dmodel to 1. Trun(·) is the truncation for
estimated T̂delay

i+1:i+Nf
.

IV. EXPERIMENTS

To validate the performance of ArrivalNet for bus/tram
multi-step ATP, 125 days of public transport operational data
in Dresden, Germany is collected. In this section, we describe
the dataset, experimental settings (including evaluation metrics
and comparison baselines), and results.

A. Dataset

1) Basic description of DVB data: The urban public trans-
port system in Dresden, Germany, is operated by DVB (Dresd-
ner Verkehrsbetriebe AG) and consists of two modes: tram and
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(a) The joint distribution of tram. The average values of link travel
distance and link travel time are 0.4702 km and 92.19 s, respectively.
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(b) The joint distribution of tram. The average values of link travel
distance and link travel time are 0.46 km and 80.79 s, respectively.

Fig. 8: The relationship between link travel distance and link
travel time.

bus. All operating public transport vehicles send their real-time
status to the central data collection system at approximately 15
second intervals, which includes current time, current location,
and distance from the previous stop within the route segment.
In this work, only the status for the time of arrival is used.
Additionally, the public transport system collects daily updated
information on operating routes and stop locations, which may
vary due to factors like road construction. In the constructed

Link 1 Platform Zone

Stop 1

Link 2

trigger point

Door opening

(a) The vehicle does not pass the trigger point between the current
and next stop and opens the door.

Link 1 Platform Zone

Stop 1

Link 2

trigger point

Door opening

(b) The vehicle passes the trigger point between the current and next
stop and opens the door.

Link 1 Platform Zone

Stop 1

Link 2

trigger point

No stop

(c) The vehicle passes the stop without opening doors.

Fig. 9: Three conditions when the vehicle arrives at the stop.

collect locations of all traffic signal 
infrastructure

For each link, check whether the 
distance of any serial point and 

signal infrastructure is less than the 
threshold.

The link maybe influenced by the 
traffic signal

The link cannot be influenced by 
the traffic signal

Boolean value concatenation

No Yes

Fig. 10: The selecting process of related traffic signal infras-
tructure.

dataset, operational tram/bus data in 125 days from all bus and
tram routes is collected. 4.97M valid sequences were extracted,
where each sequence is the sequential status of a bus/tram at
the stop from departure platform to the destination platform.
The massive and useless information for the bus/tram on the
link between platforms is removed. The average values of link
travel distance and link travel time for tram are 0.4702 km and
92.19 s, respectively. For bus, these average characteristics are
0.46 km and 80.79 s. In Fig. 8, the relationship of link travel
distance and link travel time for tram and bus is presented.
It indicates a positive correlation between travel distance and
travel time, where an increase in travel distance tends to lead
to an increase in travel time. This, in turn, impacts the ATP.
Furthermore, it demonstrates the rationality of using travel
distance and time as one of the selected features in Section II.
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2) The calculation of delays: In this work, the ATP is
formulated as predicting the delay time at each future stop
in (3) for a specific vehicle. In the data pre-processing, it
is necessary to accurately capture the actual arrival time to
calculate the real delay in seconds. For the collected data, the
enabling information of the door opening operation can serve
as an indicator of vehicle arrival time, which is event-triggered
and not affected by the approximate 15-second transmission
frequency. Specifically, vehicle arrivals at the stop can be
categorized into three conditions: the vehicle does not pass the
trigger point between the current and next stop & opens the
door, the vehicle passes the trigger point between the current
and next stop & opens the door, and the vehicle passes the
stop without opening doors. The details and differences are
illustrated in Fig. 9. With these three conditions, the arrival
time is precisely captured, which is applied for the calculation
of delay in (3).

3) The selection of contextual information: In this work,
contextual information is incorporated into the ArrivalNet,
which can improve the performance of the model. Whether a
link connecting two stops passes through a traffic signal infras-
tructure is the dynamic contextual feature, which may change
temporally in a sequence. The matching process between
infrastructure and daily updated public transport routes in
Dresden is illustrated in Fig. 10. The criterion for judgment is
whether the distance between the traffic signal infrastructure’s
position and any waypoint in the link is less than a threshold.
Fstatic consists of two static and contextual binary features:
peak/off peak hour and weekday/weekend. The morning rush
hour is set from 7:00 AM to 9:00 AM, and the evening rush
hour is set from 4:00 PM to 7:00 PM on weekdays. The
selection of related traffic signal infrastructure will be detailed
in the experiments section.

TABLE I: The setting of parameters in ArrivalNet

Description Notation Value

learning rate - 0.001
embedding feature length dmodel 16

number of 2D block - 2
selected frequency k 3

number of kernels in CNN - 6
input series length Np 10

output series length Nf 5, 10
local window size - 2

threshold in related signal selection (m) - 20

B. Experimental settings, metrics and baselines

In the training process, 90% samples (∼4.47M sequences)
in the dataset are randomly selected as the training set, and
the left samples (∼0.5M sequences) are the testing set. The
mean square error (MSE) is chosen as the loss function of
ArrivalNet. The details of parameter settings are presented
in Table I. For ArrivalNet and all baseline algorithms, the
learning rate is set as 0.001, which is fit for the convergence of
deep neural network. Following the hyperparameters in [30],
the length of embedded feature, the number of 2D block
and the number of kernels in CNN are set as 16, 2 and 6,
respectively. Considering that most of valid sequence length

is between 15 and 20, the input series length Np is set as
10 and the output lengths Nf are 5 and 10. It can reflect
the influence of sequence length to the model performance.
The minimum length of the whole sequence is 15, which
can be decomposed into 4 frequencies. Therefore, the 3 top
frequencies are selected. The minimum width of the 2D tensor
is 2, which is equal to the local window size. It can guarantee
the effectivity of basic operation in the Swin Transformer. As
for the threshold in related signal selection, it is the maximum
distance between the location of signal infrastructure and the
nearest waypoint on the link. If the distance to the nearest
waypoint is less than the threshold, it is judged as the related
signal. Experimentally, nearly all signal infrastructure can be
captured and paired with the corresponding platform when the
threshold is set to 20 m.

Three metrics are chosen for model performance evaluation,
root mean square error (RMSE), mean absolute error (MAE),
and mean absolute percentage error (MAPE). Compared to
MAE, RMSE is more sensitive to large errors in prediction
by squaring the errors before averaging. MAPE is useful in
expressing errors as a proportion of actual values. At stop ik,
the formulations of three metrics are detailed as follows:

RMSE =

√√√√ 1

Nf

ik+Nf∑

t=ik+1

(Tarrival
ik+t − T̂arrival

ik+t )
2 (32)

MAE =
1

Nf

ik+Nf∑

t=ik+1

∣∣∣Tarrival
ik+t − T̂arrival

ik+t

∣∣∣ (33)

MAPE =
100

Nf

ik+Nf∑

t=ik+1

∣∣∣∣∣
Tarrival

ik+t − T̂arrival
ik+t

Tarrival
ik+t

∣∣∣∣∣ (34)

where Nf is number of future steps. ik is the stop index of kth

sequence. T̂arrival
ik+t and Tarrival

ik+t are estimation and groundtruth
values of kth testing sequences at (ik+ t)th stop, respectively.

To validate the performance of ArrivalNet, a few baseline
methods are implemented for comparison, including the tradi-
tional time series smoothing method, the RNN-based method,
the attention-based method, and the CNN-based method.
Meanwhile, three variants of ArrivalNet are designed for
comparative study. An overview of each method is as follows:

• Traditional time series smoothing method. Auto-
regressive integrated moving average (ARIMA) is se-
lected as the traditional smoothing method, which is a
widely used statistical approach for time series forecast-
ing [47]. It is a combination of the differenced autoregres-
sive (AR) model with the moving average (MA) model.
The AR part of ARIMA shows that the time series is
regressed on its own past data. The integrated part is
used to make the time series stationary by differencing
the observations a certain number of times. The MA part
indicates that the forecast error is a linear combination
of past respective errors.

• RNN-based method. LSTM [41], as a typical recurrent
network, is chosen for comparison. LSTM enhances the
representation capability for one-dimensional temporal
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TABLE II: The Comparative Results of Tram arrival Time Prediction. The average of each metric is the mean of 10→5 and 10→10.

Metric Length ARIMA LSTM Transformer TCN ArrivalNet-1
(wo context)

ArrivalNet-2
(Swin)

ArrivalNet-3
(CNN)

RMSE
(second)

10→ 5 64.3 60.4 49.8 49.2 47.9 46.4 46.2
10→ 10 79.3 72.4 69.1 68.5 61.4 56.8 57.4
Average 71.8 66.4 59.45 58.85 54.65 51.6 51.8

MAE
(second)

10→ 5 55.2 49.9 38.8 42.5 34.2 32.7 31.5
10→ 10 61.2 57.7 50.7 48.6 41.1 38.6 37.4
Average 58.2 53.8 44.75 45.55 37.65 35.65 34.45

MAPE (%) 10→ 5 4.94 4.86 3.83 3.59 2.73 2.54 2.39
10→ 10 6.71 5.12 4.32 3.93 3.15 2.66 2.55
Average 5.825 4.99 4.075 3.76 2.94 2.6 2.47

The 1st/2nd best results are indicated in bold/underline.

TABLE III: The Comparative Results of Bus arrival Time Prediction. The average of each metric is the mean of 10→5 and 10→10.

Metric Length ARIMA LSTM Transformer TCN ArrivalNet-1
(wo context)

ArrivalNet-2
(Swin)

ArrivalNet-3
(CNN)

RMSE
(second)

10→5 66.1 63.7 53.1 52.8 49.3 48.7 48.3
10→10 83.3 74.2 65.1 67.9 61.9 57.3 58.3
Average 74.7 68.95 59.1 60.35 55.6 53 53.3

MAE
(second)

10→5 53.8 49.5 39.2 41.4 36.1 34.2 33.4
10→10 61.4 59.3 51.0 49.8 42.7 38.5 38.3
Average 57.6 54.4 45.1 45.6 39.4 36.35 35.85

MAPE (%) 10→5 5.84 5.32 3.94 3.91 3.67 3.42 3.35
10→10 8.73 6.30 4.27 4.39 3.87 3.65 3.74
Average 7.285 5.81 4.105 4.15 3.77 3.535 3.545

The 1st/2nd best results are indicated in bold/underline.
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Fig. 11: Radar charts for tram and bus with different metrics and experimental settings.

processes by modeling both long and short-term memo-
ries. It has been widely applied in the prediction of public
transport arrival times [8, 34].

• Attention-based method. Transformer is a well-
developed, attention-based method and has been widely
applied in natural language processing and trajectory
prediction [37]. Due to the attention mechanism, correla-
tions between non-adjacent time points in long temporal
sequences can be captured.

• CNN-based method. Temporal convolutional network
(TCN) is a typical time series method developed based
on CNN [48]. It captures temporal correlations through
convolutional kernels along the time dimension, which
has also been widely used in sequential human action
recognition and trajectory prediction [49].

• ArrivalNet-1 is the ArrivalNet without considering the
contextual features, which is equipped with CNN vision
backbone.
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(a) Tram case 1.

(b) Tram case 2.

Fig. 12: Two cases of tram ATP.

• ArrivalNet-2 is the ArrivalNet with Swin Transformer
vision backbone.

• ArrivalNet-3 is the ArrivalNet with CNN vision back-
bone.

C. Results
1) Quantitative results: The results regarding the ATP of

tram and bus are presented in Tables II and Table III. In
each table, three metrics (RMSE, MSE, and MAPE) are
shown for two different output lengths (10→5 and 10→10).

In Table II, three variants of proposed methods (ArrivalNet-
1, ArrivalNet-2 and ArrivalNet-3) outperform other baselines
across all three metrics. Among three ArrivalNet, the absence
of contextual features leads to a decrease in performance,
while ArrivalNet-2 or ArrivalNet-3 achieve the best results
in all six comparsions. In the tram ATP, compared to the four
baseline methods (average of two lengths), the best-performing
ArrivalNet model reduces RMSE by 28.26% (51.6 vs 71.8),
22.29% (51.6 vs 66.4), 13.20% (51.6 vs 59.45), 12.32% (51.6
vs 58.85), MAE by 40.81% (34.45 vs. 58.2), 35.97% (34.45
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(a) Bus case 1.

(b) Bus case 2.

Fig. 13: Two cases of bus ATP.

vs. 53.8), 23.02% (34.45 vs. 44.75), 24.37% (34.45 vs. 45.55),
and MAPE by 57.59% (2.47 vs. 5.825), 50.50% (2.47 vs.
4.99), 39.39% (2.47 vs. 4.075), 34.31% (2.47 vs. 3.76). In four
baseline methods, for each metric, the performance of three
deep learning methods (LSTM, Transformer, TCN) surpasses
that of the autoregressive method (ARIMA), indicating that
deep learning-based approaches have advantages in sequential
prediction.

Similar to Table II, Table III presents the corresponding
results for bus ATP. In the bus ATP, for the average of each

metric in two lengths, the best-performing ArrivalNet model
reduces RMSE by 29.05% (53 vs. 74.7), 23.13% (53 vs.
68.95), 10.32% (53 vs. 59.1), 12.18% (53 vs. 60/35), MAE
by 37.76% (35.85 vs. 57.6), 34.10% (35.85 vs. 54.4), 20.51%
(35.85 vs. 45.1), 21.38% (35.85 vs. 45.6), MAPE by 51.48%
(3.535 vs. 7.285), 39.16% (3.535 vs. 5.81), 13.89% (3.535 vs.
4.105), 14.82% (3.535 vs. 4.15). The findings from Table III
are similar to those of Table II. Overall, Table II and Table III
indicate that ArrivalNet achieves the best performance in both
tram and bus ATP. To more clearly illustrate the performance
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Fig. 14: The boxplot of MAE for each predicted stop. (vehicle
type: tram, prediction length: 10→10)

comparison among all algorithms, Fig. 11 presents two radar
charts for tram and bus across two length settings and three
metrics. The radar charts also demonstrate that the proposed
ArrivalNet consistently achieves the best performance across
different metrics and experimental settings.
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(a) ArrivalNet.
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(b) Transformer.

Fig. 15: The relationship of between MAE and ground-truth
delays (vehicle type: tram, prediction length: 10→10).

2) Case study: Fig. 12 and Fig. 13 present several cases of
tram and bus ATP. Each case is a sequential arrival information
of tram or bus with 20 stops. The labels of the x axis only
represents the platform index of the corresponding sequence,
it indicates that the same index in different cases doesn’t mean
the same physical public transport stop. In all cases, the length

of both input and output sequences are set to 10, corresponding
to platforms 1-10 and 11-20, respectively. In all cases, the
vehicle departs from the 10th platform, which is highlighted
with a golden star. In each figure, the left one is the comparison
of ground truth, predicted and scheduled arrival time, while
the right one is the comparsion of ground truth, predicted
delay. Considering that Transformer is the method with best
performance in all one-dimensional algorithms overall, it is
selected for the comparative study.

For all cases of trams and buses, the scheduled arrival time
do not match the ground truth arrival time, indicating that
discrepancies between actual arrival times and timetables are
common. It emphasizes the significance of public transport
ATP. Comparing the ground truth delay, predicted delay (Ar-
rivalNet) and predicted delay (Transformer) across all cases,
ArrivalNet is good at capturing the small variations in the
sequence, such as rising, falling, fluctuation. For example, the
platforms 13-15 in tram case 1, the platforms 14-18 in tram
case 2, the platforms 18-20 in bus case 1 and the platforms 11-
15 in bus case 2. On the contrary, Transformer cannot respond
to these changes promptly, leading to only minor increases or
decreases in the prediction of delay. It tends to generate an
average of multi-step prediction.

3) Statistical analysis: Fig. 14 shows the MAE boxplot of
all test samples (∼0.5M sequences) for different predicted
platforms by ArrivalNet-2 and Transformer. The input and
output lengths set to 10. For both methods, MAE increases as
the prediction length extends, which aligns with the general
trend observed in time series prediction. ArrivalNet achieves
a smaller MAE across all predicted platforms, including the
mean and variance. Moreover, this difference is more pro-
nounced for nearer platforms (predicted platforms 1, 2, 3).

To better understand the advantage of ArrivalNet in ATP,
Fig. 15a illustrates the joint distribution between MAE and
different delays of all test samples. In this figure, the horizontal
axis represents the actual delay at each platform, while the
vertical axis corresponds to MAE. The color of each grid
represents the percentage of samples in the test set. Comparing
the results of ArrivalNet and Transformer, MAE of ArrivalNet
is predominantly concentrated in intervals with smaller values.
As the value of delay increases, unlike ArrivalNet, MAE of
Transformer is not concentrated in a smaller interval but tend
to disperse over a broader range. This comparison suggests that
the proposed ArrivalNet can maintain predicted errors within
a smaller range.

4) The city-wide analysis: In this work, city-wide opera-
tional data is utilized. The delay in extracted sequences is the
cumulative delay, which is influenced by the delay propagation
along the route. To analyze the distribution of actual and
predicted delays in city-wide public transport, the cumulative
delay at different platforms along the same route is converted
into the link delay, which represents the delay caused by
tram/bus between two adjacent platforms. The transformation
from cumulative to link delays is to calculate the difference
of cumulative delay between adjacent platforms. As shown
in Fig. 16, the comparison of actual and predicted delays
shows that the predictions of ArrivalNet for trams are generally
consistent with ground truth. For example, in the three pairs
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108-53.4 delay time (s)

Fig. 16: The city-wide tram link delay distributions (top:
ground-truth link delay distribution, bottom: predicted link
delay distribution from ArrivalNet-3).

of circle, the proposed ArrivalNet successfully capture the
high (black), low (orange) and negative (blue) delays. It
indicates that for tram/bus ATP (delay prediction), ArrivalNet
can accurately capture the real city-wide delay distribution and
pattern.

TABLE IV: The influence of negative delay (vehicle type: tram,
prediction length: 10)

metric w/ negative delay w/o negative delay error increase
RMSE 57.4 59.78 4.0%
MAE 37.4 39.1 4.55%

MAPE 2.55 2.84 11.37%

w/ negative delay: Same with previous experiments in Table. II and
Table. III.
w/o negative delay: All negative delay in samples are set as 0.

Similarly, Fig. 17 presents the city-wide distribution of the
ground truth and the average predicted link delays. Comparing
the ground truth link delay between the tram and the bus at
the top of Fig. 16 and Fig. 17, the overall delay of the bus is
higher than that of the tram. In the comparison within Fig. 17,
it indicates that ArrivalNet can well predict the city-wide link
delay distribution with low positive values. However, it also

100-60 delay time (s)

Fig. 17: The city-wide bus link delay distributions (top:
ground-truth link delay distribution, bottom: predicted link
delay distribution from ArrivalNet-3).

reveals that ArrivalNet cannot perfectly capture the actual
delay modes in downtown areas, which is also highlighted
by the black circle. This could be due to the presence of more
traffic congestion in downtown areas. Another possible reason
is that most of Dresden’s tram links use dedicated rail lines
that do not overlap with roads used by buses and private cars.
Therefore, the arrival time prediction of trams is less affected
by the uncertainty of artery traffic conditions. This makes it
easier to predict than buses.

5) The influence of negative delay: In this study, the Dres-
den city-wide data has instances with negative delay, indicating
that the vehicle arrives at the stop earlier than the scheduled
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Fig. 18: The relationship of negative delay at the current stop
and the delay at the next stop.

time. The causes of negative delay are varied, such as the
absence of passengers boarding or alighting at specific stops,
or bunching issues between consecutive vehicles. Typically,
public transport drivers mitigate negative delays by increasing
the dwell time at stops to prevent the propagation of the delay
to subsequent stops.

Fig. 18 illustrates the relationship between delays at stops
exhibiting negative delay and the delays at the subsequent
stops. Specifically, Fig. 18a presents a 2D distribution of all
samples in the dataset with negative delay, while Fig. 18 shows
a joint plot combining scatter and 1-dimensional distributions.
From these figures, it is evident that overall, vehicles tend
to reduce or eliminate negative delay at the next stop. Ap-
proximately 30.31% of samples transition to a positive delay

at the subsequent stop. This indicates that public transport
vehicles actively work to reduce negative delays to maintain
alignment with the schedule. Ideally, negative delays would
not be propagated to the next stop, thereby preventing any
impact on arrival time predictions.

To further analyze the impact of negative delay on the
performance of ATP, an additional experiment was conducted.
For the tram ATP, all negative delays were set to zero during
model training. The results of this experiment are presented
in Table IV, where the length of the prediction step is 10. It
shows that including negative delay helps the model learn a
more accurate delay propagation process. Conversely, when
negative delay is excluded, the model’s performance slightly
declines, though it does not result in a complete failure of
the model. Future research may involve incorporating external
knowledge to more precisely characterize the propagation of
negative delay, thereby enhancing the training process of the
deep learning model.

In addition to analyzing the city-wide link delay distribution
of all collected data, this work also presents the variation in
city-wide link delay at each hour of the day to investigate the
performance of ArrivalNet’s estimation at the hour level. The
data collected on Aug 4th, 2022 (Thursday) is selected to show
the city-wide link delay in one day. Fig. 19 and Fig.20 present
link delay distributions at different times for tram and bus,
respectively. To simplify the description, three hours in one
day are shown, which include 7 AM to 8 AM (morning rush
hour), 3 PM to 4 PM (normal afternoon), and 6 PM to 7 PM
(evening rush hour). In both figures, the first row is the city-
wide ground truth link delay, and the second is for prediction
by ArrivalNet-3. The average link delay below each map is the
mean of all public transport links in Dresden. The comparison
between different times in one day indicates that compared
with non-peak hours, there is a higher link delay during peak
hours. This finding applies to both trams and buses. It also
shows that it is reasonable to use whether in the rush hour as a
contextual feature in the problem formulation. Comparing the
average link delay of ground truth and prediction, ArrivalNet
can predict the trend of delay variation in one day. From the
perspective of application, ArrivalNet can be used as a city-
wide public transport delay monitor.

V. CONCLUSIONS

In this paper, we propose a two-dimensional temporal
variation-based bus/tram ATP model, which is termed as
ArrivalNet. With the FFT transformation, it decomposes one-
dimensional time series into two-dimensional temporal varia-
tion, that represents both intra-period and inter-period changes.
The useful temporal feature of the two-dimensional tensor
can be effectively extracted by vision backbones. Moreover,
drawing on the concept of ResNet [46], this two-dimensional
temporal variation module can be defined as a basic module,
allowing for flexible use and adjustment. Validated by a city-
wide dataset from the public transport system in Dresden,
ArrivalNet demonstrates superiority in multi-step bus/tram
ATP compared to baseline methods. It can be used for traveler
information systems and public transport management sys-
tems.
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Fig. 19: The city-wide hour-level tram link delay distributions (top row: ground-truth link delay distribution, bottom row:
predicted link delay distribution from ArrivalNet-3).
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Fig. 20: The city-wide hour-level bus link delay distributions (top row: ground-truth link delay distribution, bottom row:
predicted link delay distribution from ArrivalNet-3).

This study focuses on uncovering periodic regularities in
temporal information but does not consider the inherent insta-
bility of the time series data itself. Future work will focus on
mitigating the impact of non-stationary samples on sequential
prediction capabilities.
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