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Abstract
Advanced traffic management systems rely heavily on accurate traffic state estimation and prediction. Traffic prediction 
based on conventional road-based sensors faces considerable challenges due to spatiotemporal correlations of traffic flow 
propagation, and heterogeneous, error-prone, and missing data. This paper proposes a hybrid deep learning approach for 
online traffic volume prediction in an urban network. The approach ensembles the long short-term memory (LSTM) neural 
network and the convolutional neural networks (CNN) in a parallel way. In order to deal with missing data, a state-of-the-
art Bayesian probabilistic imputation method is employed in the overall prediction pipeline. The hybrid traffic prediction 
structure can capture the spatiotemporal characteristics of traffic volume. The proposed prediction model is verified by the 
loop and infrared sensor data in the inner city network of the City of Dresden. Experimental results show that it can achieve 
superior volume prediction compared with baseline methods.

Keywords Spatiotemporal traffic data · Traffic prediction · Time series prediction · Data imputation · Traffic management

Introduction

Accurate traffic forecasting constitutes a fundamental com-
ponent of intelligent transportation systems (Vlahogianni 
et al. 2014; Yin et al. 2021; Azfar et al. 2024). The goal of 
traffic forecasting is to predict future traffic characteristics, 
such as volume or speed, based on historical or observed 
traffic data  (Guo et  al. 2019). A reliable and accurate 

traffic prediction model is an indispensable component for 
advanced traffic management systems (ATMS) and advanced 
traveler information systems (ATIS), where traffic managers 
and travelers highly desire accurate and reliable traffic infor-
mation (Wang et al. 2016; Ma et al. 2019; Furno et al. 2024).

In recent years, numerous works have been conducted, 
exploring diverse approaches to address the traffic predic-
tion problem (Jiang and Luo 2022; Liu et al. 2024). Despite 
the numerous publications that recently appeared on this 
topic, a robust solution in practice is still missing due to 
several challenges (Ramana et al. 2023; Chen et al. 2021; 
Wang et al. 2023). Firstly, the underlying traffic flow dynam-
ics are highly nonlinear, especially in congested states. The 
propagation of traffic flow in a road network exhibits strong 
spatio-temporal correlations (Ramana et al. 2023). Secondly, 
loop detectors are the most widely adopted traffic sensors in 
real-world systems, but they have reliability problems and 
are prone to erroneous and missing measurements (Chen 
et al. 2021). Thirdly, road operators have implemented dif-
ferent sensor types that have different mechanisms in traffic 
measurements. The measured quantities, the sptio-temporal 
resolutions, and the characteristics of error and missing val-
ues are of substantial difference between the sensors (Wang 
et al. 2023). Reliable and robust prediction models that 
address the aforementioned challenges are highly desirable 
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for real-time ATMS and ATIS, and are the scope of this 
work.

Related Works

We first review the relevant work on traffic prediction, with 
a focus on data-driven methods (Vlahogianni et al. 2014; Lv 
et al. 2015). Data-driven approaches to traffic state forecast-
ing are typically classified into parametric and nonparamet-
ric techniques. Among parametric methods, Bayesian net-
works (Ghosh et al. 2007), autoregressive integrated moving 
average models (ARIMA) (Lee and Fambro 1999; Zhong 
et al. 2004a, b), and support vector regression (SVR) (Cas-
tro-Neto et al. 2009) are frequently used for traffic predic-
tion. Bayesian networks are renowned for their probabil-
istic graphical modelling capabilities, whereas ARIMA 
models are well-regarded for their robustness in univariate 
time series prediction, and SVR has been recognized for its 
effectiveness in regression problems. However, parametric 
models have several limitations. The primary limitation of 
parametric models lies in their assumption of a specific data 
distribution or structure, which can lead to model misspeci-
fication if the actual data do not conform to these assump-
tions. Additionally, parametric models may struggle with 
flexibility, as they are not designed to adapt to the complexi-
ties and nonlinearities present in traffic data. Nonparametric 
models have gained popularity in response to the constraints 
of parametric methods. Nonparametric approaches do not 
assume a particular model structure, offering greater flex-
ibility in capturing the patterns and trends inherent in traffic 
data (Gershman and Blei 2012; Li et al. 2024).

Through the latest research in this field, the NNs are par-
ticularly promising for transportation research within the 
context of big data and the high dimensions of features (Do 
et al. 2019; Ye et al. 2020; Rahmani et al. 2023). Recurrent 
neural networks (RNNs) are a subclass of neural networks 
adept at handling sequential data. Unlike feed-forward neural 
networks, RNNs incorporate feedback connections, allowing 
information from previous steps to influence the network’s 
future states. This characteristic is exemplified by the Elman 
and Jordan networks, where feedback originates from the 
hidden and output layers, respectively (Medsker and Jain 
2001). For instance, Jordan networks have been applied to 
traffic prediction with notable success (Zhang 2000).

However, traditional RNNs face the vanishing gradi-
ent problem, which impairs their ability to learn long-term 
dependencies. Long Short-Term Memory (LSTM) networks 
address this issue with a gating mechanism that regulates 
memory updates, consisting of a cell and input, forget, and 
output gates (Ma et al. 2015). While LSTMs excel at cap-
turing temporal patterns, as demonstrated by a three-layer 
LSTM traffic predictor (Ma et al. 2015), their application has 
often been confined to unidimensional time series, lacking 

in spatial correlation representation. In contrast, convolu-
tional neural networks (CNNs) have revolutionized com-
puter vision through their ability to process grid-like topolo-
gies, a feature increasingly exploited in short-term traffic 
prediction. Ma et al. (2017) proposed a two-dimensional 
CNN approach to predict the traffic network speed. CNNs 
automatically extract features from tensor-represented inputs 
with local correlations, achieved via convolution operations. 
With the development of deep learning, the attention mecha-
nism was successfully applied in the traffic prediction. Wang 
et al. (2022) proposed to predict traffic flow using the spa-
tial-temporal gated graph neural network. It demonstrated 
improved accuracy by capturing complex dependencies in 
traffic data. In Chen et al. (2023), a dynamic spatiotemporal 
graph attention network was developed based on the atten-
tion mechanism, which considered the macroscopic periodic 
characteristics of traffic flow. Similarly, Ye et al. (2023) pre-
sented a traffic flow predictor based on dynamic multi-graph 
neural network. It incorporated sudden traffic accidents into 
multi-step traffic flow prediction by constructing an acci-
dent-related adjacency matrix.

Moreover, several works have reported that hybrid models 
offer multiple benefits for time series forecasting, includ-
ing improved prediction accuracy, better interpretability, 
and more effective handling of data limitations  (Shah et al. 
2022; Salman et al. 2024). In Zheng et al. (2006), a Bayesian 
combination neural network approach was used to combine 
two different neural network predictors: the back propaga-
tion neural network model and the radial basis function neu-
ral network model to predict short-term freeway traffic flow. 
As traffic data involves strong spatial-temporal correlations, 
the CNN-LSTM combination is a popular choice for traf-
fic state estimation (Zhao et al. 2021; Wu and Tan 2016). 
Specifically, Wu and Tan (2016) proposed a deep architec-
ture that inherits the advantages of both CNN and LSTM 
for short-term traffic flow prediction. Similarly, Cao et al. 
(2020); Islam et al. (2022); Rajalakshmi and Ganesh Vaidy-
anathan (2022) utilized a CNN-LSTM-based hybrid archi-
tecture to forecast traffic speed and flow.

Lastly, in practical scenarios, traffic data frequently 
contain missing values due to issues such as detector mal-
function or communication loss, leading to gaps in traffic 
information that can undermine the effectiveness of traffic 
flow predictions (Asif et al. 2016; Liu et al. 2018). Imputing 
missing data before prediction has been shown to improve 
traffic forecasting performance (Boquet et al. 2019). Over 
the years, several methods have been proposed to impute 
missing data, ranging from basic statistical techniques to 
advanced deep learning models (Smith et al. 2003; Chan 
et  al. 2023). Early methods include historical average 
(HA) (Smith et al. 2003), Autoregressive Integrated Mov-
ing Average (ARIMA) (Sharma et al. 2004), and princi-
pal component analysis (PCA) (Qu et al. 2009). However, 
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these methods primarily focus on temporal correlations and 
neglect spatial relationships. To address this issue, Chang 
et al. (2012) used an improved K-Nearest Neighbor (KNN) 
method incorporating spatiotemporal information to impute 
traffic volume data in Beijing. Additionally, Li et al. (2020) 
presented a hybrid model combining a prophet model for 
temporal properties and an iterative random forest model for 
spatial dependencies. Moreover, tensor factorization meth-
ods have been widely used for traffic data imputation by 
leveraging low-rank properties of both temporal and spatial 
data (Ran et al. 2015; Chen et al. 2019a, b; Xue et al. 2024). 
Where, Ran et al. (2015) utilized a low-rank tensor com-
pletion method to impute missing traffic data, effectively 
capturing spatio-temporal correlations. Chen et al. (2019a, 
2019b) incorporated a Bayesian approach into the tensor 
decomposition model for traffic data imputation. Specifi-
cally, Chen et al. (2019a) proposed a Bayesian probabilistic 
matrix factorization method that utilizes a third-order ten-
sor structure to capture the underlying dependencies among 
different dimensions for incomplete spatiotemporal traffic 
data. Furthermore, Lyu et al. (2024) introduced novel Tucker 
Imputation for addressing missing values in spatio-tempo-
ral traffic data that combines tensor factorization with rank 
minimization, effectively capturing key traffic dynamics 
without exhaustive rank tuning. The model incorporates 
time series decomposition to handle trends, spatio-tempo-
ral correlations, and outliers, enhancing the robustness of 
imputation results. While tensor factorization methods have 
shown promising performance in handling complex traffic 
data imputation tasks, they require low-rank traffic data and 
retraining for new missing data. Deep learning methods, on 
the other hand, have emerged as a popular alternative due 
to their ability to effectively capture spatiotemporal correla-
tions in traffic data.

In recent years, there have been significant advancements 
in deep learning-based methods for traffic data imputation, 
with researchers employing various architectures such as 
Long Short-Term Memory (LSTM), Gated Recurrent Units 
(GRU), Generative Adversarial Networks (GAN), Graph 
Neural Networks (GNN), and attention mechanisms (Chan 
et al. 2023). Huang et al. (2023) proposed a GAN-based 
framework for traffic sensor data imputation, incorporat-
ing a novel time-dependent encoding method called GASF. 
This method converts time-series data into images, enabling 
improved GAN-based generation and achieving high impu-
tation accuracy even with significant data loss. Tian et al. 
(2023) combined the stacked autoencoder (SAE) with GAN 
for traffic data imputation. The SAE extracts spatiotempo-
ral features from incomplete traffic data, while the GAN 
generates complete traffic data based on these extracted 
features. Another popular approach is the use of GNN, as 
road networks can be treated as graphs, capturing strong 
spatiotemporal correlations. Liang et al. (2022) developed a 

Memory-augmented Dynamic Graph Convolution Networks 
(MDGCN) that combines a memory network, LSTM, and 
GCN to capture dynamic spatial correlations for traffic data 
imputation. Zhang et al. (2021) introduced an imputation 
model combining Graph Convolutional Networks (GCN) 
and GRU to handle missing traffic data and forecast traffic 
states. Ye et al. (2021) employed an encoder-decoder struc-
ture with Graph Attention Convolutional Networks (GACN) 
to fill in missing traffic data, leveraging graph attention 
mechanisms for spatial features and temporal convolutional 
layers for temporal features. Xue et al. (2024) introduced 
NMFD-GNN, a physics-informed machine learning method 
integrating the network macroscopic fundamental diagram 
(NMFD) with graph neural networks (GNN) for traffic 
state imputation. This approach captures spatio-temporal 
dependencies while adhering to traffic flow theories and 
outperformed six baseline models in real-world experiments 
on Zurich and London traffic networks using the UTD19 
dataset.

Objectives and Contributions

From the existing literature on traffic state prediction, it is 
evident that traffic data exhibits both temporal and spatial 
correlations. While LSTM models excel at capturing tem-
poral correlations, CNNs are effective at deciphering spatial 
patterns. Combining the strengths of LSTM and CNN has 
shown promise in enhancing traffic prediction performance. 
The development of such hybrid models is increasingly 
gaining researchers’ interest. However, in previous studies, 
researchers often paired LSTM layers with one-dimensional 
CNN layers. This configuration causes the neural networks 
to process the two types of correlations separately, which 
may limit their effectiveness.

This paper proposes an imputation-enhanced hybrid traf-
fic volume prediction model. In particular, we put forward a 
data imputation-enhanced traffic volume prediction method, 
where a data imputation method based on Bayesian Gauss-
ian tensor decomposition is integrated into the prediction 
model (Chen et al. 2019a). The imputation method has the 
advantage of dealing with the original incomplete dataset 
and the sparsity issue. To generate robust prediction per-
formance, we proposed a hybrid deep learning approach, 
which combines a long short-term memory (LSTM) neural 
network and a convolutional neural network (CNN). The 
parallel architecture ensures simultaneous processing of the 
input data matrix by both LSTM and two-dimensional CNN 
layers, which explores the superiority of LSTM and CNN 
in temporal and spatial modeling, respectively. After feature 
extraction by the LSTM layers and CNN layers, the cells are 
merged with a concatenate layer, where the data from LSTM 
and CNN are stitched together. The proposed architecture 
guarantees that the two-dimensional CNN extracts the 
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spatiotemporal features in the input data, while the LSTM 
enhances the understanding of temporal correlations.

Systematic experiments with real-world traffic detector 
data in Hangzhou, China and Dresden, Germany demon-
strate that BGCP can impute missing data accurately. Raw 
road sensor data from the Traffic Analysis, Management 
and Optimisation System (Verkehrs Analyse, Management 
und Optimierungs System—VAMOS) of the city of Dres-
den with heterogeneous sampling time, missing values and 
unreliable measurements are used for verifying the predic-
tion model performance. By comparing with the baseline 
prediction methods, our proposed hybrid prediction archi-
tecture can generate robust performance in terms of different 
history input lengths and prediction lengths for the Dresden 
city network.

In the sequel, we first revisit the imputation method and 
then present the neural network-based hybrid prediction 
model, followed by the experimental design and verification 
results of the imputation method and the prediction model 
performance.

The Proposed Prediction Model

This paper proposes an imputation-enhanced hybrid traffic 
volume prediction model. As shown in Fig. 1, raw traffic 
data from VAMOS is fed into the BGCP model to impute 
missing data (Chen et al. 2019a). The VAMOS data we were 
dealing with has diverse missing patterns. BGCP was chosen 
over other imputation techniques due to its superior perfor-
mance in handling non-linear relationships and its reliability 
and transferability for spatiotemporal traffic data imputation 
tasks in a wide range of datasets (Chen et al. 2019a). The 
imputed data is then fed into the hybrid parallel prediction 
model consisting of LSTM and CNN networks. The newly 
proposed parallel hybrid model enables online traffic volume 
prediction. We discuss the details of the different modules of 
the prediction model in the remainder of the section.

Revisit of the BGCP Method

BGCP is an extension of Bayesian matrix factorization model 
in high order tensor, which applies Bayesian Gaussian Pro-
cess in the data generation of CANDECOMP/PARAFAC (CP) 
tensor decomposition (Salakhutdinov and Mnih 2008; Chen 
et al. 2019a). Traffic matrix factorization involves decompos-
ing a traffic data matrix into multiple lower-dimensional fac-
tors. This decomposition captures the underlying patterns and 
structures in the traffic data. In BGCP, this is achieved using 
tensor decomposition techniques, specifically the CP model. 
The CP model represents the multi-dimensional traffic data 
as a sum of component rank-one tensors, making it easier to 
analyze and manipulate the data. The underlying assumption 

for incomplete traffic data in the BGCP algorithm is that the 
observed traffic data can be modeled as a low-rank tensor with 
missing entries. This assumption is based on the idea that the 
traffic data matrix or tensor has an inherent low-dimensional 
structure, despite being high-dimensional and sparse due to 
missing values.

Let X ∈ ℝn1×n2×⋯×nd donates a dth tensor, where 
nk  is the dimension along the kth way. In ten-
sor X , x

i
 is applied to represent the entry with index 

i = (i1, i2, ..., id)(1 ⩽ ik ⩽ nk,∀k ∈ {1, 2, ..., d}) . The motiva-
tion of CP decomposition is to estimate X by the low-rank 
structure,

with factor matrix:

where ⊗ is the outer product and u(1)
r

⊗ u(2)
r

⊗⋯⊗ u(d)
r

 is 
the rank-one matrix. R is the CP rank of tensor X̂ . The entry 
x
i
 can be formulated as follow:

(1)X̂ =

R∑
r=1

u
(1)
r

⊗ u
(2)
r

⊗⋯⊗ u
(d)
r

(2)U
(k) =

⎡⎢⎢⎣

� � �
u
(k)

1
u
(k)

2
⋯ u

(k)

R� � �

⎤⎥⎥⎦
∈ ℝ

nk×R, k = 1, 2,… , d

Fig. 1  The overall illustration of the proposed framework



Data Science for Transportation (2024) 6:22 Page 5 of 16 22

where u(k)
ik ,r

 is the value at ikth row and rth column in the kth 
factor matrix. In the CP decomposition, tensor X is incom-
plete with missing elements and the indexes of observed 
entries is denoted as Ω . In BGCP, a fully Bayesian model is 
introduced for the missing data generation, which assumes 
observed entries in X̂ follows the Gaussian distribution,

where N(⋅) is the Gaussian distribution and �� is the preci-
sion. Similarly, the factor matrices also follow the multivari-
ate Gaussian distributions:

where �(k) ∈ ℝr and Λ(k) ∈ ℝr×r are hyper-parameters, which 
is modeled by conjugate Gaussian–Wishart priors:

where 𝛽0 > 0 is the coefficient of Λ(k) . A Wishart distribution 
with v0 degrees of freedom and scale matrix W0 is given by

where tr(⋅) is the trace function. For the precision �� , a flex-
ible conjugate Gamma prior is applied over �� to improve the 
robustness of the model:

where a0 and b0 are the shape parameter and rate parameter, 
respectively. In the inferring process, the Gibbs sampling 
algorithm is introduced to estimate the hyper-parameters 
and generate missing values. For more details of the Gibbs 
sampling and the complete BGCP method, we refer readers 
to Chen et al. (2019a), Salakhutdinov and Mnih (2008).

Long Short‑Term Memory (LSTM) Neural Network

LSTM is a network with a long-term memory function consist-
ing of a forgetting gate, input data, and output date (Hochre-
iter and Schmidhuber 1997), as shown in Fig. 2. The forward 
process of LSTM could be represented as (9)–(13). The for-
get gate decides what information to discard in the cell state 
and updates the cell state (9–10). The input gate decides what 
new information to store in the cell state (11). The output 

(3)xi1,i2,…,id
=

R∑
r=1

u
(1)

i1,r
× u

(2)

i2,r
×⋯ × u

(d)

id ,r
=

R∑
r=1

d∏
k=1

u
(k)

ik ,r

(4)x
i
∼ N(x̂

i
, 𝜏−1

𝜖
)

(5)u
(k)

ik
∼ N

(
�
(k),

(
Λ(k)

)−1)

(6)

(
�
(k),Λ(k)

)
∼ Gaussian–Wishart

(
�0, �0,W0, �0

)
,

p
(
�
(k),Λ(k)|−) = N

(
�
(k)|�0,

(
B0Λ

(k)
)−1)

×Wishart
(
Λ(k)|W0, �0

)

(7)

Wishart
(
Λ(k)|W0, �0

)
=

1

C
|Λ(k)| �0−r−1

2 exp
{
−
1

2
tr(W−1

0
Λ(k))

}

(8)�� ∼ Gamma
(
a0, b0

)

gate controls the output information based on the cell state 
(12)–(13).

At time step t, the input and output of the LSTM hidden 
layer are xt and ht , and the memory unit is ct . The forget gate 
is formulated as follow:

where bf  is the bias, Wxf  and Whf  are the weight matrices in 
forget gate, ht−1 is the output from the last timestep and xt is 
the input at the current timestep. The forget gate uses a Sig-
moid activation function �f  , which outputs values between 
0 and 1. These values are multiplied element-wise to the 
previous cell state. A value close to 0 means forgetting this 
completely, while a value close to 1 means retaining this 
completely. Then, the cell state is updated by:

where Wxc and Whc are weights. bc is the bias in the update 
of cell state. The old cell state ct−1 is multiplied by ft from 
the forget gate, deciding which parts of the old state to keep. 
New candidate values, generated by a tanh layer, are scaled 
by the output of the input gate it . These values are then added 
to the state. The input gate controls which values of the can-
didate state are allowed to be added to the cell state. The 
input gate is detailed as follow:

where Wxi and Whi are weights. bc is the bias in the update 
of input gate. It uses a Sigmoid function to output values 
between 0 and 1, effectively acting as a filter for the candi-
date values. The output gate is formulated in the similar way 
with weight matrices Wxo , Who and bo.

(9)ft = �f
(
Wxf xt +Whfht−1 + bf

)

(10)ct = ft ∗ ct−1 + it ∗ tanh(Wxcxt +Whcht−1 + bc)

(11)it = �
(
Wxixt +Whiht−1 + bi

)

(12)ot = �
(
Wxoxt +Whoht−1 + bo

)

Fig. 2  The illustration of LSTM
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Finally, the hidden state ht is calculated by multiplying the 
output gate’s activation ot with the tanh of the updated cell 
state (ct . This step filters the cell state through the output 
gate, allowing the LSTM to control what information is 
passed along to the output layer or the next time step in the 
sequence. Each component (gate) of the LSTM has a specific 
role in regulating the flow of information, making the net-
work capable of learning which data is relevant to retain or 
discard over long sequences. This design helps mitigate the 
vanishing gradient problem common in traditional recurrent 
neural networks.

Convolutional Neural Networks (CNN)

CNN, as multilayer perceptrons, are commonly used to ana-
lyze visual images LeCun et al. (1989, 1998). Figure 3 shows 
the structure of a two-dimensional CNN in the context of 
traffic state prediction with four main parts: model input, 
traffic feature extraction, prediction and model output (Cui 
et al. 2020). The model input is the image-like feature gen-
erated from a traffic network with spatiotemporal charac-
teristics. Let X ∈ ℝT×P donate the input tensor, where T is 
the number of historical timestamps and P is the number of 
road sensors.

The extraction of the spatiotemporal features is the com-
bination of convolutional and pooling layers and is also the 
core part of the CNN model. In this step, the processes in 
the convolutional layer and pooling layer are worth to be 
described, and before discussing the explicit layers, it should 
be noted that each layer is activated by an activation func-
tion. The benefits of employing the activation function are 
as follows: (1) the activation function transforms the output 
to a manageable and scaled data range, which is beneficial 
to model training; (2) the combination of the activation 
function through layers can mimic very complex nonlinear 

(13)ht = ot ∗ tanh
(
ct

) functions, making the CNN powerful enough to handle the 
complexity of a traffic network. Similar to Cui et al. (2020), 
the Relu function is applied. It is defined as follows:

where x is the element in X . Convolutional layers differ from 
traditional feedforward neural networks where each input 
cell is connected to each output cell and the networks are 
fully connected. The CNN uses convolutional filters over its 
input layer and obtains local connections where only local 
input cells are connected to the local output cells. Hundreds 
of filters are sometimes applied to the input and results are 
merged in each layer. One filter can extract one traffic feature 
from the local input layer. Those extracted traffic features are 
combined further to extract a higher level and more abstract 
traffic features. This process confirms the compositionality 
of the CNN, meaning each filter composes a local path from 
lower-level into higher-level features. When one convolu-
tional filter Wr

l
 , where r is the index of the multiple convolu-

tional filters and l is the index of the multiple convolutional 
layers in the CNN, is utilized to the local input, the output 
can be calculated as:

where m and n are two dimensions of the filter, d(e,f ) denotes 
the data value of the input matrix at position e and f, and 
W

r
l,(e,f )

 is the coefficient of the convolutional filter. yconv is the 
local output of this convolutional layer after the processing 
of this filter. Pooling layers are designed to downsample and 
aggregate data because they only extract salient numbers 
from the specific region. The pooling layers guarantee that 
CNN is locally invariant, which means that the CNN can 
always extract the same feature from the input, regardless of 
feature shifts, rotations, or scales (LeCun et al. 1995). Based 

(14)𝜎(x) =

{
x, if x > 0

0, otherwise

(15)yconv = Σm
e=1

Σn
f=1

(
W

r
l,(e,f )

d(e,f )

)

Fig. 3  Deep learning architec-
ture of CNN in the context of 
transportation (Cui et al. 2020)
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on the above mentioned facts, the pooling layers can not only 
reduce the network scale of the CNN but also identify the 
most prominent features of input layers. In our paper, the 
maximum operation is applied as follows:

where p and q are two dimensions of pooling window size, 
d(e,f ) is the data value of the local input matrix of this pooling 
layer. ypool is the pooling output.The pooling procedure of lth 
is formulated as follow:

where the input, output and parameters of lth layer are 
denoted by xk , Ol and (Wk, bk) . In the process of useful fea-
ture extraction from traffic volume data, the spatiotemporal 
correlations can be analyzed simultaneously as the convo-
lutional filters have both temporal and spatial dimensions in 
the process of convolution.

The Hybrid Prediction Model

We developed a parallel hybrid prediction model for traffic 
volume by combining the strengths of LSTM and CNN to 
effectively handle both temporal and spatial correlations. 
The model takes the imputed traffic data as input, shaped 
as (T ,O) , where T  represents the number of time steps and 
O denotes the output size. This input is simultaneously fed 
into two separate blocks: the LSTM block and the CNN 
block. The LSTM block is designed to capture the temporal 
dependencies in the traffic data. It includes two LSTM lay-
ers as previously explained in Section  2.2. The first LSTM 
layer has 64 units and is configured to return sequences. The 

(16)ypool = max
(
d(e,f )

)
, e ∈ [1, p], f ∈ [1, q]

(17)Ol = pool

(
�

(
cl∑
k=1

Wk ⋅ xk + bk

))

output is then activated using the tanh function and followed 
by a dropout layer with a rate of 0.5 to prevent overfitting. 
The second LSTM layer, which has 256 units, further pro-
cesses the output from the first LSTM layer. The larger num-
ber of units in the second layer enhances the model’s ability 
to capture more complex temporal dependencies. This layer 
also uses the tanh activation function and is followed by 
another dropout layer with a rate of 0.5.

Simultaneously, the CNN block processes the spatial fea-
tures of the traffic data. Initially, the input data is reshaped to 
(T ,O, 1) to fit the expected input shape for CNNs. This path 
includes three convolutional layers (C) , each followed by a 
max-pooling layer and ReLU activation function, as detailed 
in Section  2.3. The first convolutional layer ( (C1) ) has 256 
filters with a kernel size specified by K[0] , followed by a 
max-pooling layer ( (P1) ) that reduces the spatial dimensions. 
The second convolutional layer (C2) has 128 filters with a 
kernel size defined by K[1] , also followed by a max-pooling 
layer ( (P2) ). The third convolutional layer (C3) has 64 filters 
with a kernel size specified by K[2] , and it too is followed 
by a max-pooling layer (P3) . The output of the last convo-
lutional layer is then flattened into a vector (F) . The outputs 
from the LSTM and CNN blocks are concatenated to form a 
combined feature vector. This concatenated vector captures 
both the temporal dependencies and spatial features of the 
traffic data. Finally, this vector is passed through a dense 
layer with O units to produce the final predicted traffic vol-
ume. The detail of Concatenate and dense layer calculation 
provided in Eqs.  18 and 19.

(18)Hconcat = Concatenate
(
H2,F

)
Hconcat ∈ ℝ

(19)Y = Dense
(
Hconcat,O

)
Y ∈ ℝ

O
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Algorithm 1  Parallel Hybrid Traffic Volume Prediction Model

A detailed illustration of how each component is con-
nected and interacts with each other is provided in Fig. 4, 
which includes the shapes and parameter sizes of each 
layer, and the descriptions of each notation are in Table 1. 
All hyperparameters of this model were chosen based on 

extensive preliminary experiments, hyperparameter tuning 
processes, and literature studies. For instance, the selection 
of 256 units for the LSTM layers ensures sufficient capac-
ity to capture complex temporal dependencies in the traffic 
data. The dropout rate of 0.5 effectively prevents overfitting 

Fig. 4  The structure of the 
proposed hybrid model
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without significantly hindering the model’s learning ability. 
The choice of 128 and 256 filters in the convolutional lay-
ers is based on the need to extract robust spatial features at 
different scales, allowing the model to handle various pat-
terns in the traffic data. Additionally, other hyperparameters 
like batch size and learning rate, detailed in the experiment 
section, were fine-tuned to balance model complexity and 
performance, ultimately leading to improved prediction 
accuracy and generalization capabilities. The details of 
our model construction and pseudocode are presented in 
Algorithm 1.

Experiments

To validate our proposed methodology, we have formulated 
a comprehensive experiment plan, that includes systematic 
processing of raw data to deploying an optimized traffic pre-
diction model. As illustrated in Fig.  5, we initially address 
the challenge of missing entries in the raw data using the 
BGCP Imputer, thus preparing a complete dataset for subse-
quent analysis. This dataset is then meticulously divided into 
separate sets for training, validation, and testing to establish 
a solid foundation for model development and rigorous eval-
uation. The main part of our experiment involves construct-
ing the four aforementioned prediction models and tuning 

the hyperparameters based on their evaluation to obtain the 
best-trained model. Subsequently, the performance of these 
models was compared, and the best one was deployed. In the 
following section, we discuss the dataset, evaluation criteria, 
and experimental results in detail.

Data Description

We used our in-house VAMOS dataset for our experi-
ments. VAMOS (Verkehrsanalyse-, Management- und 
Optimierungssystem) is a urban traffic management system 
developed in collaboration with City of Dresden and the 
Saxon State Road Administration. This system utilizes an 
extensive network of over 1800 traffic detectors, including 
loops, infrared sensors, floating vehicles, and roadside units 
(RSUs) to facilitate around-the-clock traffic monitoring and 
management. For this study, we consider a subset of the data 
from 28 sensors, comprising loop detectors and infrared sen-
sors. The artery for data collection is shown in Fig. 6a. This 
dataset provides traffic volume and speed measurements at 
one-minute intervals. The distribution of the samples in the 
VAMOS dataset is illustrated in Fig. 6b.

Evaluation metrics

The selection of appropriate evaluation methods for 
both imputation and prediction is crucial. Following the 
approach outlined in Yin et al. (2021), we consider three 
widely used quantitative predictive error-based perfor-
mance metrics: Mean Squared Error (MSE), Root Mean 
Squared Error (RMSE), and Mean Absolute Percentage 
Error (MAPE). The MSE is a performance metric that 
calculates the average of the squared differences between 
the actual and predicted values. Its differentiability and 
emphasis on larger errors make it well suited for opti-
mization tasks, although it remains sensitive to outliers. 
RMSE is a regression metric representing the square root 
of the average squared difference between the actual and 
predicted values. Its emphasis on larger errors and rescal-
ing to the original units makes it especially useful when 
significant deviations are undesirable. MAPE expresses 
the average forecast error as a percentage of the actual 

Table 1  Notations used in the model description

Notation Description

X Input traffic data shaped as (T ,O)
T Number of time steps
O Output size (number of traffic features)
H1 Intermediate output from the first LSTM layer
H2 Intermediate output from the second LSTM layer
X
r

Reshaped input for CNNs with dimensions (T ,O, 1)
C1,C2,C3 Outputs from the three convolutional layers
P1,P2,P3 Outputs from the max-pooling layers
F Flattened output from the final convolutional block
Hconcat Concatenated vector combining LSTM and CNN features
Y Final output (predicted traffic volume)

Fig. 5  Workflow diagram for 
developing the data-driven traf-
fic volume predictor
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values, aiding interpretability. However, this can be mis-
leading for near-zero actual values owing to the inflated 
relative errors.

In this study, the RMSE and MAPE were used to assess 
the performance of the imputation and prediction tasks. 
Additionally, MSE was adopted as the loss function during 
the training of the neural-network-based prediction mod-
els. The mathematical expressions of all the metrics are 
defined as follows:

(20)MSE =
1

n
Σn
i=1

(yi − xi)
2

where yi represents the original data points, xi denotes the 
imputed or predicted data, and n denotes the total number 
of data points in the dataset.

Data Preparation

The raw VAMOS dataset contains some missing entries. We 
can categorize the missing entries in the dataset into two 
types: random missing and fiber missing. Random missing 
entries occur unpredictably throughout the dataset and are 
unrelated to each other. This is typical of data collected by 
1-minute interval sensors. Fiber missing entries involve con-
tinuous missing data for a specific day or several days, poten-
tially due to sensor malfunctions. The missing rate in the 
VAMOS raw data varies, with some sensors experiencing 

(21)RMSE =

√
1

n
Σn
i=1

(yi − xi)
2

(22)MAPE =
100%

n
Σn
i=1

||||
yi − xi

yi

||||

Fig. 6  Dataset components: a Dresden arterial network (source of the VAMOS traffic data); b example of traffic volume data recorded by 
VAMOS sensors

Fig. 7  Relationship between imputation errors and extra missing 
(VAMOS)

Table 2  Overview of the final dataset

Attributes Values/Samples

Number of total samples 1,208,480
Number of sensors 28
Number of training set 725,088
Number of validation set 241,696
Number of testing set 241,696
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missing values up to 50%. Although this is not a frequent 
occurrence, it may still interfere with prediction accuracy.

As the VAMOS data lacks ground truth Yan (2022), we 
first attempted to reproduce the BGCP model’s imputation 
results by emulating a similar missing pattern in two open-
source datasets-Guanzhou and Hangzhou-that are mentioned 
in the original paper. The descriptions of the two open-
source datasets are provided in Appendix A. The detailed 
results of our imputation experiment are shown in Table 4. 
Our primary focus was to address the missing values in the 
raw data; hence, we did not conduct extensive experiments 
on imputation performance. However, we evaluated the 
overall performance of imputation by intentionally remov-
ing some samples. The results of this evaluation are detailed 
in Fig. 7. The y-axis of the MAPE is expressed in percent-
age and only indicates the relative increase compared to the 
original, complete VAMOS dataset. It is noticeable that as 
the quantity of additionally deleted data increases, the error 

of the BGCP imputation based on the VAMOS dataset also 
rises significantly.

Fig. 8  The variation of the loss function during the training

Table 3  RMSE values for different models across various time hori-
zons

Time Hori-
zon (min)

Parallel Hybrid CNN LSTM Linear hybrid

1 0.9577 1.0245 1.1022 1.3392
5 1.0219 1.0756 1.1645 1.3189
10 1.0421 1.1163 1.2161 1.5913
15 1.1555 1.2527 1.2465 1.3848
20 1.1790 1.2698 1.3826 1.4653
40 1.4168 1.3734 1.5572 1.5477
60 1.6975 1.6280 1.7923 1.9191
120 2.3481 2.3125 2.5155 2.9841
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We used this imputed data for training, validation, and 
testing to evaluate our model’s performance. We split the 
data in a 6:2:2 ratio for the training, validation, and testing 
datasets, respectively. The details of the final processed data 
are shown in Table 2.

Results

Experimental Results and Analysis

We conducted experiments on our prediction models by 
using the imputed VAMOS dataset. The experiment involved 
utilizing historical traffic volume data from all 28 sensors 
over the past 40 min to forecast traffic volumes at these loca-
tions for several future intervals (e.g., 1, 5, and 10 min). The 
input data for the traffic volume were structured in a tensor 
with dimensions representing minutes by sensors. During 
the training process, the loss function is determined by MSE. 
It is employed to measure the distance between predictions 
and ground-truth traffic volume. Thus, minimizing the MSE 
is taken as the training goal of the four NN models, let the 
set of all the trainable parameters in a neural network model 
be Θ , and the training strategy can be described as follows:

The MSE for both the training and validation sets was 
computed for all four models after each epoch. Using the 
training of the 1-minute prediction model as an example, 
Fig. 8 illustrates a consistent decrease in MSE across the 
10 training epochs, indicating effective training. Notably, 

(23)Θ = argmin
Θ

MSE.

during the last two or three epochs, the MSE for the valida-
tion set stabilized, despite initial fluctuations, which sug-
gests model convergence. However, it was observed that the 
MSE values for the LSTM and linear hybrid models were 
significantly higher than those for the other two models. 
This implies that the training efficacy for these two models 
might be somewhat constrained. Whether these limitations 
translate to inferior performance on the test set remains an 
area for further investigation. Given the data and settings 
described, seven distinct predictors were developed for each 
neural network architecture to accommodate various predic-
tion time horizons: 1 min, 5 min, 15 min, 20 min, 40 min, 
60 min, and 120 min.

The evaluation of different predictors was conducted 
using a test set comprising traffic volume data from Octo-
ber 10th to 15th, 2018. We only consider RMSE as the 
primary goal of the study is to evaluate and compare the 
prediction accuracy of different models Hodson (2022). For 
this purpose, RMSE is an appropriate and sufficient met-
ric. It directly measures the deviation of predictions from 
actual values, aligning with our study objectives. The aver-
age RMSE for these predictors was assessed across different 
prediction time horizons, as depicted in Table 3. Although 
the loss functions were computed on normalized data (rang-
ing from 0 to 1), the RMSE values reported here were cal-
culated using actual, unnormalized data, providing a more 
intuitive performance measure in vehicles per minute. As 
shown in table, LSTM predictors consistently underper-
formed compared to CNN and parallel hybrid models. This 
underperformance is likely due to the LSTM’s emphasis on 
temporal correlations and its approach of treating data from 
various sensors as distinct time series. Consequently, as the 

Fig. 9  Relationship between 
RMSE and prediction time 
horizons during rush hour
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prediction horizon extended, the accuracy of LSTM-based 
models diminished noticeably.

Table 3 highlights that the parallel hybrid model achieved 
the lowest RMSE across most time horizons, indicating 
superior performance in traffic volume prediction. The CNN 
model followed closely, outperforming the LSTM model in 
shorter time horizons but showing a less pronounced accu-
racy degradation over longer prediction periods. Conversely, 
the linear hybrid model exhibited the highest RMSE values, 
especially as the prediction horizon increased, reflecting its 
relatively poorer performance in capturing complex traffic 
patterns.

We also further investigated the performance of the four 
models across different time horizons for specific scenarios, 
such as during rush hours. Specifically, the focus was on the 
6:00 to 10:00 timeframe, which corresponds to Dresden’s 
morning rush hour. As illustrated in Fig. 9, the proposed 
parallel hybrid structure consistently demonstrated superior 
or comparable prediction accuracy using the RMSE metric. 
In the overall traffic scenario, the CNN model performed 
better in some cases. However, in special scenarios such as 

rush hours, it is evident that the parallel hybrid model out-
performs or matches the performance of the other models, 
reinforcing its robustness and reliability for short-term traf-
fic predictions. This indicates that the hybrid model is more 
robust and consistently delivers superior performance across 
various traffic conditions.

Conclusion and Future Works

In this paper, an imputation-enhanced traffic volume pre-
diction framework is proposed. The framework employs 
a Bayesian Gaussian Copula Process (BGCP) based traf-
fic imputation model to prepare the data, ensuring that the 
model receives error-free inputs. Additionally, a novel paral-
lel hybrid deep learning approach is designed to enhance the 
predictability of traffic volume. The efficacy of the proposed 
method is validated using the VAMOS dataset from Dres-
den, Germany. Experimental results demonstrate that the 
framework can accurately predict traffic volume even with 

Table 4  Values of RMSE and 
MAPE under random missing 
(Guangzhou)

Location Type Error 10% 20% 30% 40% 50% 60% 70%

Guangzhou Random RMSE 3.3384 3.3530 3.3671 3.3869 3.4258 3.4782 3.5387
MAPE 0.0774 0.0778 0.0781 0.0784 0.0790 0.0801 0.0813

Fibre RMSE 3.6025 3.7986 4.0524 4.5985 4.9651 5.4099 6.0790
MAPE 0.0793 0.0825 0.0858 0.0919 0.1002 0.1085 0.1190

Hangzhou Random RMSE 0.2577 0.3148 0.3978 0.4579 0.5141 0.6085 0.7762
MAPE 0.1441 0.1521 0.1596 0.1697 0.1812 0.1970 0.2353

Fibre RMSE 0.2258 0.3272 0.4266 0.4786 0.6072 0.7042 0.8869
MAPE 0.1433 0.1513 0.1608 0.1711 0.1808 0.1946 0.2417

Fig. 10  The data distribution: a speed data of Guangzhou dataset, and b volume data of Hangzhou dataset
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sparse raw data. This study emphasizes the integration of 
spatiotemporal information for multi-step prediction.

Testing different imputation models is not the focus of 
the paper; instead, we used a state-of-the-art model in this 
study. We reproduced BGCP imputation results using two 
open-source datasets and conducted an indirect evaluation of 
imputation method. However, exploring different imputation 
models and actively evaluating the imputation results warrants 
a future research direction. The imputation algorithm in the 
proposed framework is computationally demanding, and there 
have been significant developments in deep learning-based 
imputation models. Future work will focus on improving com-
putational efficiency and utilizing newer models for imputa-
tion. Additionally, the influence of road topology within the 
urban network will be considered in the next stage (e.g., graph 
convolution network (GCN) Rahman and Hasan (2023)).

Guangzhou and Hangzhou Dataset, China

The first one is a large-scale traffic dataset collected in 
Guangzhou, China. The dataset is generated by a widely used 
navigation application on smartphones, which contains travel 
speed observations from 214 road segments in 61 days, the 
time period from 1st August, 2016 to 30th September, 2016. 
The time interval of Guangzhou dataset is 10 min. The total 
amount of observations is 1.88M. The data distribution of 
Guangzhou dataset is shown in Fig. 10a. As for the Hangzhou 
dataset, it contains the traffic volume information from 80 
different metro stations in Hangzhou, China within 25 days. 
The total amount of Hangzhou dataset is 21,600 samples. The 
data distribution histogram is shown in Fig. 10b.
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