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Abstract

Advanced traffic management systems rely heavily on accurate traffic state estimation and prediction. Traffic prediction
based on conventional road-based sensors faces considerable challenges due to spatiotemporal correlations of traffic flow
propagation, and heterogeneous, error-prone, and missing data. This paper proposes a hybrid deep learning approach for
online traffic volume prediction in an urban network. The approach ensembles the long short-term memory (LSTM) neural
network and the convolutional neural networks (CNN) in a parallel way. In order to deal with missing data, a state-of-the-
art Bayesian probabilistic imputation method is employed in the overall prediction pipeline. The hybrid traffic prediction
structure can capture the spatiotemporal characteristics of traffic volume. The proposed prediction model is verified by the
loop and infrared sensor data in the inner city network of the City of Dresden. Experimental results show that it can achieve

superior volume prediction compared with baseline methods.

Keywords Spatiotemporal traffic data - Traffic prediction - Time series prediction - Data imputation - Traffic management

Introduction

Accurate traffic forecasting constitutes a fundamental com-
ponent of intelligent transportation systems (Vlahogianni
et al. 2014; Yin et al. 2021; Azfar et al. 2024). The goal of
traffic forecasting is to predict future traffic characteristics,
such as volume or speed, based on historical or observed
traffic data (Guo et al. 2019). A reliable and accurate
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traffic prediction model is an indispensable component for
advanced traffic management systems (ATMS) and advanced
traveler information systems (ATIS), where traffic managers
and travelers highly desire accurate and reliable traffic infor-
mation (Wang et al. 2016; Ma et al. 2019; Furno et al. 2024).

In recent years, numerous works have been conducted,
exploring diverse approaches to address the traffic predic-
tion problem (Jiang and Luo 2022; Liu et al. 2024). Despite
the numerous publications that recently appeared on this
topic, a robust solution in practice is still missing due to
several challenges (Ramana et al. 2023; Chen et al. 2021;
Wang et al. 2023). Firstly, the underlying traffic flow dynam-
ics are highly nonlinear, especially in congested states. The
propagation of traffic flow in a road network exhibits strong
spatio-temporal correlations (Ramana et al. 2023). Secondly,
loop detectors are the most widely adopted traffic sensors in
real-world systems, but they have reliability problems and
are prone to erroneous and missing measurements (Chen
et al. 2021). Thirdly, road operators have implemented dif-
ferent sensor types that have different mechanisms in traffic
measurements. The measured quantities, the sptio-temporal
resolutions, and the characteristics of error and missing val-
ues are of substantial difference between the sensors (Wang
et al. 2023). Reliable and robust prediction models that
address the aforementioned challenges are highly desirable
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for real-time ATMS and ATIS, and are the scope of this
work.

Related Works

We first review the relevant work on traffic prediction, with
a focus on data-driven methods (Vlahogianni et al. 2014; Lv
et al. 2015). Data-driven approaches to traffic state forecast-
ing are typically classified into parametric and nonparamet-
ric techniques. Among parametric methods, Bayesian net-
works (Ghosh et al. 2007), autoregressive integrated moving
average models (ARIMA) (Lee and Fambro 1999; Zhong
et al. 2004a, b), and support vector regression (SVR) (Cas-
tro-Neto et al. 2009) are frequently used for traffic predic-
tion. Bayesian networks are renowned for their probabil-
istic graphical modelling capabilities, whereas ARIMA
models are well-regarded for their robustness in univariate
time series prediction, and SVR has been recognized for its
effectiveness in regression problems. However, parametric
models have several limitations. The primary limitation of
parametric models lies in their assumption of a specific data
distribution or structure, which can lead to model misspeci-
fication if the actual data do not conform to these assump-
tions. Additionally, parametric models may struggle with
flexibility, as they are not designed to adapt to the complexi-
ties and nonlinearities present in traffic data. Nonparametric
models have gained popularity in response to the constraints
of parametric methods. Nonparametric approaches do not
assume a particular model structure, offering greater flex-
ibility in capturing the patterns and trends inherent in traffic
data (Gershman and Blei 2012; Li et al. 2024).

Through the latest research in this field, the NNs are par-
ticularly promising for transportation research within the
context of big data and the high dimensions of features (Do
et al. 2019; Ye et al. 2020; Rahmani et al. 2023). Recurrent
neural networks (RNNs) are a subclass of neural networks
adept at handling sequential data. Unlike feed-forward neural
networks, RNNs incorporate feedback connections, allowing
information from previous steps to influence the network’s
future states. This characteristic is exemplified by the Elman
and Jordan networks, where feedback originates from the
hidden and output layers, respectively (Medsker and Jain
2001). For instance, Jordan networks have been applied to
traffic prediction with notable success (Zhang 2000).

However, traditional RNNs face the vanishing gradi-
ent problem, which impairs their ability to learn long-term
dependencies. Long Short-Term Memory (LSTM) networks
address this issue with a gating mechanism that regulates
memory updates, consisting of a cell and input, forget, and
output gates (Ma et al. 2015). While LSTMs excel at cap-
turing temporal patterns, as demonstrated by a three-layer
LSTM traffic predictor (Ma et al. 2015), their application has
often been confined to unidimensional time series, lacking
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in spatial correlation representation. In contrast, convolu-
tional neural networks (CNNs) have revolutionized com-
puter vision through their ability to process grid-like topolo-
gies, a feature increasingly exploited in short-term traffic
prediction. Ma et al. (2017) proposed a two-dimensional
CNN approach to predict the traffic network speed. CNNs
automatically extract features from tensor-represented inputs
with local correlations, achieved via convolution operations.
With the development of deep learning, the attention mecha-
nism was successfully applied in the traffic prediction. Wang
et al. (2022) proposed to predict traffic flow using the spa-
tial-temporal gated graph neural network. It demonstrated
improved accuracy by capturing complex dependencies in
traffic data. In Chen et al. (2023), a dynamic spatiotemporal
graph attention network was developed based on the atten-
tion mechanism, which considered the macroscopic periodic
characteristics of traffic flow. Similarly, Ye et al. (2023) pre-
sented a traffic flow predictor based on dynamic multi-graph
neural network. It incorporated sudden traffic accidents into
multi-step traffic flow prediction by constructing an acci-
dent-related adjacency matrix.

Moreover, several works have reported that hybrid models
offer multiple benefits for time series forecasting, includ-
ing improved prediction accuracy, better interpretability,
and more effective handling of data limitations (Shah et al.
2022; Salman et al. 2024). In Zheng et al. (2006), a Bayesian
combination neural network approach was used to combine
two different neural network predictors: the back propaga-
tion neural network model and the radial basis function neu-
ral network model to predict short-term freeway traffic flow.
As traffic data involves strong spatial-temporal correlations,
the CNN-LSTM combination is a popular choice for traf-
fic state estimation (Zhao et al. 2021; Wu and Tan 2016).
Specifically, Wu and Tan (2016) proposed a deep architec-
ture that inherits the advantages of both CNN and LSTM
for short-term traffic flow prediction. Similarly, Cao et al.
(2020); Islam et al. (2022); Rajalakshmi and Ganesh Vaidy-
anathan (2022) utilized a CNN-LSTM-based hybrid archi-
tecture to forecast traffic speed and flow.

Lastly, in practical scenarios, traffic data frequently
contain missing values due to issues such as detector mal-
function or communication loss, leading to gaps in traffic
information that can undermine the effectiveness of traffic
flow predictions (Asif et al. 2016; Liu et al. 2018). Imputing
missing data before prediction has been shown to improve
traffic forecasting performance (Boquet et al. 2019). Over
the years, several methods have been proposed to impute
missing data, ranging from basic statistical techniques to
advanced deep learning models (Smith et al. 2003; Chan
et al. 2023). Early methods include historical average
(HA) (Smith et al. 2003), Autoregressive Integrated Mov-
ing Average (ARIMA) (Sharma et al. 2004), and princi-
pal component analysis (PCA) (Qu et al. 2009). However,
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these methods primarily focus on temporal correlations and
neglect spatial relationships. To address this issue, Chang
et al. (2012) used an improved K-Nearest Neighbor (KNN)
method incorporating spatiotemporal information to impute
traffic volume data in Beijing. Additionally, Li et al. (2020)
presented a hybrid model combining a prophet model for
temporal properties and an iterative random forest model for
spatial dependencies. Moreover, tensor factorization meth-
ods have been widely used for traffic data imputation by
leveraging low-rank properties of both temporal and spatial
data (Ran et al. 2015; Chen et al. 2019a, b; Xue et al. 2024).
Where, Ran et al. (2015) utilized a low-rank tensor com-
pletion method to impute missing traffic data, effectively
capturing spatio-temporal correlations. Chen et al. (2019a,
2019b) incorporated a Bayesian approach into the tensor
decomposition model for traffic data imputation. Specifi-
cally, Chen et al. (2019a) proposed a Bayesian probabilistic
matrix factorization method that utilizes a third-order ten-
sor structure to capture the underlying dependencies among
different dimensions for incomplete spatiotemporal traffic
data. Furthermore, Lyu et al. (2024) introduced novel Tucker
Imputation for addressing missing values in spatio-tempo-
ral traffic data that combines tensor factorization with rank
minimization, effectively capturing key traffic dynamics
without exhaustive rank tuning. The model incorporates
time series decomposition to handle trends, spatio-tempo-
ral correlations, and outliers, enhancing the robustness of
imputation results. While tensor factorization methods have
shown promising performance in handling complex traffic
data imputation tasks, they require low-rank traffic data and
retraining for new missing data. Deep learning methods, on
the other hand, have emerged as a popular alternative due
to their ability to effectively capture spatiotemporal correla-
tions in traffic data.

In recent years, there have been significant advancements
in deep learning-based methods for traffic data imputation,
with researchers employing various architectures such as
Long Short-Term Memory (LSTM), Gated Recurrent Units
(GRU), Generative Adversarial Networks (GAN), Graph
Neural Networks (GNN), and attention mechanisms (Chan
et al. 2023). Huang et al. (2023) proposed a GAN-based
framework for traffic sensor data imputation, incorporat-
ing a novel time-dependent encoding method called GASF.
This method converts time-series data into images, enabling
improved GAN-based generation and achieving high impu-
tation accuracy even with significant data loss. Tian et al.
(2023) combined the stacked autoencoder (SAE) with GAN
for traffic data imputation. The SAE extracts spatiotempo-
ral features from incomplete traffic data, while the GAN
generates complete traffic data based on these extracted
features. Another popular approach is the use of GNN, as
road networks can be treated as graphs, capturing strong
spatiotemporal correlations. Liang et al. (2022) developed a

Memory-augmented Dynamic Graph Convolution Networks
(MDGCN) that combines a memory network, LSTM, and
GCN to capture dynamic spatial correlations for traffic data
imputation. Zhang et al. (2021) introduced an imputation
model combining Graph Convolutional Networks (GCN)
and GRU to handle missing traffic data and forecast traffic
states. Ye et al. (2021) employed an encoder-decoder struc-
ture with Graph Attention Convolutional Networks (GACN)
to fill in missing traffic data, leveraging graph attention
mechanisms for spatial features and temporal convolutional
layers for temporal features. Xue et al. (2024) introduced
NMFD-GNN, a physics-informed machine learning method
integrating the network macroscopic fundamental diagram
(NMFD) with graph neural networks (GNN) for traffic
state imputation. This approach captures spatio-temporal
dependencies while adhering to traffic flow theories and
outperformed six baseline models in real-world experiments
on Zurich and London traffic networks using the UTD19
dataset.

Objectives and Contributions

From the existing literature on traffic state prediction, it is
evident that traffic data exhibits both temporal and spatial
correlations. While LSTM models excel at capturing tem-
poral correlations, CNNs are effective at deciphering spatial
patterns. Combining the strengths of LSTM and CNN has
shown promise in enhancing traffic prediction performance.
The development of such hybrid models is increasingly
gaining researchers’ interest. However, in previous studies,
researchers often paired LSTM layers with one-dimensional
CNN layers. This configuration causes the neural networks
to process the two types of correlations separately, which
may limit their effectiveness.

This paper proposes an imputation-enhanced hybrid traf-
fic volume prediction model. In particular, we put forward a
data imputation-enhanced traffic volume prediction method,
where a data imputation method based on Bayesian Gauss-
ian tensor decomposition is integrated into the prediction
model (Chen et al. 2019a). The imputation method has the
advantage of dealing with the original incomplete dataset
and the sparsity issue. To generate robust prediction per-
formance, we proposed a hybrid deep learning approach,
which combines a long short-term memory (LSTM) neural
network and a convolutional neural network (CNN). The
parallel architecture ensures simultaneous processing of the
input data matrix by both LSTM and two-dimensional CNN
layers, which explores the superiority of LSTM and CNN
in temporal and spatial modeling, respectively. After feature
extraction by the LSTM layers and CNN layers, the cells are
merged with a concatenate layer, where the data from LSTM
and CNN are stitched together. The proposed architecture
guarantees that the two-dimensional CNN extracts the
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spatiotemporal features in the input data, while the LSTM
enhances the understanding of temporal correlations.

Systematic experiments with real-world traffic detector
data in Hangzhou, China and Dresden, Germany demon-
strate that BGCP can impute missing data accurately. Raw
road sensor data from the Traffic Analysis, Management
and Optimisation System (Verkehrs Analyse, Management
und Optimierungs System—VAMOS) of the city of Dres-
den with heterogeneous sampling time, missing values and
unreliable measurements are used for verifying the predic-
tion model performance. By comparing with the baseline
prediction methods, our proposed hybrid prediction archi-
tecture can generate robust performance in terms of different
history input lengths and prediction lengths for the Dresden
city network.

In the sequel, we first revisit the imputation method and
then present the neural network-based hybrid prediction
model, followed by the experimental design and verification
results of the imputation method and the prediction model
performance.

The Proposed Prediction Model

This paper proposes an imputation-enhanced hybrid traffic
volume prediction model. As shown in Fig. 1, raw traffic
data from VAMOS is fed into the BGCP model to impute
missing data (Chen et al. 2019a). The VAMOS data we were
dealing with has diverse missing patterns. BGCP was chosen
over other imputation techniques due to its superior perfor-
mance in handling non-linear relationships and its reliability
and transferability for spatiotemporal traffic data imputation
tasks in a wide range of datasets (Chen et al. 2019a). The
imputed data is then fed into the hybrid parallel prediction
model consisting of LSTM and CNN networks. The newly
proposed parallel hybrid model enables online traffic volume
prediction. We discuss the details of the different modules of
the prediction model in the remainder of the section.

Revisit of the BGCP Method

BGCP is an extension of Bayesian matrix factorization model
in high order tensor, which applies Bayesian Gaussian Pro-
cess in the data generation of CANDECOMP/PARAFAC (CP)
tensor decomposition (Salakhutdinov and Mnih 2008; Chen
et al. 2019a). Traffic matrix factorization involves decompos-
ing a traffic data matrix into multiple lower-dimensional fac-
tors. This decomposition captures the underlying patterns and
structures in the traffic data. In BGCP, this is achieved using
tensor decomposition techniques, specifically the CP model.
The CP model represents the multi-dimensional traffic data
as a sum of component rank-one tensors, making it easier to
analyze and manipulate the data. The underlying assumption
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incomplete raw VAMOS data
BGCP model-based imputation
imputation-enhanced complete data
4 — N
hybrid prediction model
[ LsT™M | [ oW

\_ ,
traffic volume prediction ]

Fig. 1 The overall illustration of the proposed framework

for incomplete traffic data in the BGCP algorithm is that the
observed traffic data can be modeled as a low-rank tensor with
missing entries. This assumption is based on the idea that the
traffic data matrix or tensor has an inherent low-dimensional
structure, despite being high-dimensional and sparse due to
missing values.

Let X € R>XmXXn donates a dth tensor, where
n, is the dimension along the kth way. In ten-
sor X, x; is applied to represent the entry with index
i=0(3,0,....i)<i, <n,Vk e {l,2,..,d}). The motiva-
tion of CP decomposition is to estimate X by the low-rank
structure,

R
=Y u @uP ® - u (1)

r=1
with factor matrix:
| |

k) _ | 0 [, K) (k) mXR 1, _
U7 =|u” uy’ - u,’ |ERW N k=12,...d )
[ |

where ® is the outer product and " ® u(r2) R ® u(rd) is
the rank-one matrix. R is the CP rank of tensor X. The entry
x; can be formulated as follow:
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R R d
_ D @ D _ (k)
xi,,iz,“.,id - uil,r x uiz,r x X uid,r - Z uik,r (3)
r=1 r=1 k=1
where u® is the value at i,th row and rth column in the kth

I,r
factor mkatrix. In the CP decomposition, tensor X is incom-
plete with missing elements and the indexes of observed
entries is denoted as Q. In BGCP, a fully Bayesian model is
introduced for the missing data generation, which assumes
observed entries in X follows the Gaussian distribution,

X~ ./\/'()?i,‘r;l) )

where M(+) is the Gaussian distribution and 7, is the preci-
sion. Similarly, the factor matrices also follow the multivari-
ate Gaussian distributions:

ol ~ A, (%)) ©)

where p® € R” and A® € R™" are hyper-parameters, which
is modeled by conjugate Gaussian—Wishart priors:

(1™, AD) ~ Gaussian-Wishart( g, By, Wy, v )
p(u®, A®|-) =, /y( 1O g, (ByA®) ™! ) x Wishart(A®| Wy, v, )
(6)

where fi, > 0 s the coefficient of A®. A Wishart distribution
with v, degrees of freedom and scale matrix W, is given by

vo—r—

1
Wishart (A®|W,, v;) = é|/\<’<>| T exp {—%tr(Wo‘lA(k))}
@)

where tr(-) is the trace function. For the precision 7, a flex-
ible conjugate Gamma prior is applied over 7, to improve the
robustness of the model:

T, ~ Gamma(ao, bo) 1))

where g, and b, are the shape parameter and rate parameter,
respectively. In the inferring process, the Gibbs sampling
algorithm is introduced to estimate the hyper-parameters
and generate missing values. For more details of the Gibbs
sampling and the complete BGCP method, we refer readers
to Chen et al. (2019a), Salakhutdinov and Mnih (2008).

Long Short-Term Memory (LSTM) Neural Network

LSTM is a network with a long-term memory function consist-
ing of a forgetting gate, input data, and output date (Hochre-
iter and Schmidhuber 1997), as shown in Fig. 2. The forward
process of LSTM could be represented as (9)—(13). The for-
get gate decides what information to discard in the cell state
and updates the cell state (9-10). The input gate decides what
new information to store in the cell state (11). The output

h’A
[ forget gate 4 input gate \ e output gate N\
“@ || NN o
\Aj ' tanh| g
X AKX
Elff] @ (o]
5 h
hyq — -/ >

Xt

Fig.2 The illustration of LSTM

gate controls the output information based on the cell state
(12)-(13).

At time step ¢, the input and output of the LSTM hidden
layer are x, and £,, and the memory unit is c,. The forget gate
is formulated as follow:

f= Gf(foX, +W,h_, + bf) ©)

where by is the bias, W, and W, are the weight matrices in
forget gate, h,_, is the output from the last timestep and x, is
the input at the current timestep. The forget gate uses a Sig-
moid activation function oy, which outputs values between
0 and 1. These values are multiplied element-wise to the
previous cell state. A value close to 0 means forgetting this
completely, while a value close to 1 means retaining this
completely. Then, the cell state is updated by:

¢, =f xc_, +1, * tanh(W,.x, + W, h,_, +b,) (10)

where W, . and W, are weights. b, is the bias in the update
of cell state. The old cell state ¢,_; is multiplied by f; from
the forget gate, deciding which parts of the old state to keep.
New candidate values, generated by a tanh layer, are scaled
by the output of the input gate i,. These values are then added
to the state. The input gate controls which values of the can-
didate state are allowed to be added to the cell state. The
input gate is detailed as follow:

i, =0(W.x, +W,h_, + bi) (11

where W,; and W, are weights. b, is the bias in the update
of input gate. It uses a Sigmoid function to output values
between 0 and 1, effectively acting as a filter for the candi-
date values. The output gate is formulated in the similar way
with weight matrices W,,, W, andb,.

X0’

0,=c(W,x,+W,h_ +b,) (12)
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h, = o, * tanh(c,) (13)
Finally, the hidden state h, is calculated by multiplying the
output gate’s activation o, with the tanh of the updated cell
state (c,. This step filters the cell state through the output
gate, allowing the LSTM to control what information is
passed along to the output layer or the next time step in the
sequence. Each component (gate) of the LSTM has a specific
role in regulating the flow of information, making the net-
work capable of learning which data is relevant to retain or
discard over long sequences. This design helps mitigate the
vanishing gradient problem common in traditional recurrent
neural networks.

Convolutional Neural Networks (CNN)

CNN, as multilayer perceptrons, are commonly used to ana-
lyze visual images LeCun et al. (1989, 1998). Figure 3 shows
the structure of a two-dimensional CNN in the context of
traffic state prediction with four main parts: model input,
traffic feature extraction, prediction and model output (Cui
et al. 2020). The model input is the image-like feature gen-
erated from a traffic network with spatiotemporal charac-
teristics. Let X € R donate the input tensor, where T is
the number of historical timestamps and P is the number of
road sensors.

The extraction of the spatiotemporal features is the com-
bination of convolutional and pooling layers and is also the
core part of the CNN model. In this step, the processes in
the convolutional layer and pooling layer are worth to be
described, and before discussing the explicit layers, it should
be noted that each layer is activated by an activation func-
tion. The benefits of employing the activation function are
as follows: (1) the activation function transforms the output
to a manageable and scaled data range, which is beneficial
to model training; (2) the combination of the activation
function through layers can mimic very complex nonlinear

Fig.3 Deep learning architec- input
ture of CNN in the context of .
transportation (Cui et al. 2020)

functions, making the CNN powerful enough to handle the
complexity of a traffic network. Similar to Cui et al. (2020),
the Relu function is applied. It is defined as follows:

o % x>0
~ ] 0, otherwise

where x is the element in X. Convolutional layers differ from
traditional feedforward neural networks where each input
cell is connected to each output cell and the networks are
fully connected. The CNN uses convolutional filters over its
input layer and obtains local connections where only local
input cells are connected to the local output cells. Hundreds
of filters are sometimes applied to the input and results are
merged in each layer. One filter can extract one traffic feature
from the local input layer. Those extracted traffic features are
combined further to extract a higher level and more abstract
traffic features. This process confirms the compositionality
of the CNN, meaning each filter composes a local path from
lower-level into higher-level features. When one convolu-
tional filter W}, where r is the index of the multiple convolu-
tional filters and / is the index of the multiple convolutional
layers in the CNN, is utilized to the local input, the output
can be calculated as:

=T X <W£(e,f)d(ef))

where m and n are two dimensions of the filter, d(e 5 denotes
the data value of the input matrix at position e and f, and
er,(e, 1 1s the coefficient of the convolutional filter. y.,,, is the
local output of this convolutional layer after the processing
of this filter. Pooling layers are designed to downsample and
aggregate data because they only extract salient numbers
from the specific region. The pooling layers guarantee that
CNN is locally invariant, which means that the CNN can
always extract the same feature from the input, regardless of
feature shifts, rotations, or scales (LeCun et al. 1995). Based

4

as)
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convolution
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on the above mentioned facts, the pooling layers can not only
reduce the network scale of the CNN but also identify the
most prominent features of input layers. In our paper, the
maximum operation is applied as follows:

ypnol = max (d(ef))’ e e [l’p]’f € [1’ C]] (16)

where p and g are two dimensions of pooling window size,
d,, s, is the data value of the local input matrix of this pooling
layer. y,,,01 is the pooling output.The pooling procedure of lth
is formulated as follow:

k=1

where the input, output and parameters of /th layer are
denoted by x,, O, and (W,, b,). In the process of useful fea-
ture extraction from traffic volume data, the spatiotemporal
correlations can be analyzed simultaneously as the convo-
lutional filters have both temporal and spatial dimensions in
the process of convolution.

The Hybrid Prediction Model

We developed a parallel hybrid prediction model for traffic
volume by combining the strengths of LSTM and CNN to
effectively handle both temporal and spatial correlations.
The model takes the imputed traffic data as input, shaped
as (T, O), where T represents the number of time steps and
O denotes the output size. This input is simultaneously fed
into two separate blocks: the LSTM block and the CNN
block. The LSTM block is designed to capture the temporal
dependencies in the traffic data. It includes two LSTM lay-
ers as previously explained in Section 2.2. The first LSTM
layer has 64 units and is configured to return sequences. The

output is then activated using the tanh function and followed
by a dropout layer with a rate of 0.5 to prevent overfitting.
The second LSTM layer, which has 256 units, further pro-
cesses the output from the first LSTM layer. The larger num-
ber of units in the second layer enhances the model’s ability
to capture more complex temporal dependencies. This layer
also uses the tanh activation function and is followed by
another dropout layer with a rate of 0.5.

Simultaneously, the CNN block processes the spatial fea-
tures of the traffic data. Initially, the input data is reshaped to
(T, O, 1) to fit the expected input shape for CNNs. This path
includes three convolutional layers (C), each followed by a
max-pooling layer and ReLU activation function, as detailed
in Section 2.3. The first convolutional layer ((C,)) has 256
filters with a kernel size specified by K[0], followed by a
max-pooling layer ((P,)) that reduces the spatial dimensions.
The second convolutional layer (C,) has 128 filters with a
kernel size defined by K[1], also followed by a max-pooling
layer ((P,)). The third convolutional layer (C;) has 64 filters
with a kernel size specified by K[2], and it too is followed
by a max-pooling layer (P5). The output of the last convo-
lutional layer is then flattened into a vector (F). The outputs
from the LSTM and CNN blocks are concatenated to form a
combined feature vector. This concatenated vector captures
both the temporal dependencies and spatial features of the
traffic data. Finally, this vector is passed through a dense
layer with O units to produce the final predicted traffic vol-
ume. The detail of Concatenate and dense layer calculation
provided in Eqs. 18 and 19.

H

concat

= Concatenate(Hz,F ) H. o ER (18)

Y = Dense(H g 0) Y € R? (19)
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Fig.4 The structure of the i
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Algorithm 1 Parallel Hybrid Traffic Volume Prediction Model

I
I activation
I

|
Tanh 1
|
|

1
|
256 1
1
-l

Input: Time steps 7', Output size O, Kernel sizes K

Output: Trained model
1: function BuiLbpMoDpEL(T, O, K)
X € RTXO (Traffic data)
ip « Input(shape = (T, 0))
LSTM Block:

al « tanh(h?)

d! + Dropout(0.5)(at)

hy + LSTM(256)(d})

ag < tanh(hg)

ds < Dropout(0.5)(as)
CNN Block:
10: Y < Reshape((T,0,1))(ip)
fori=1 to 3 do

© ® N> g on

1L

h! + LSTM(64, return_sequences=True)(ip)

C; < Conv2D(256/2'~!, kernel size = K[i — 1], padding =" same’)(Y)

12: P; + MaxPooling2D(2)(C;)

13: Az «— RGLU(PZ)

14: Y «— A;

15:

16: F < Flatten(Aj)
Concatenate and Output:

17: C + Concatenate([do, F])

18: output < Dense(O)(C)

19: model < Model(ip, output)

20: return model

21: end function

A detailed illustration of how each component is con-
nected and interacts with each other is provided in Fig. 4,
which includes the shapes and parameter sizes of each
layer, and the descriptions of each notation are in Table 1.
All hyperparameters of this model were chosen based on

@ Springer

extensive preliminary experiments, hyperparameter tuning
processes, and literature studies. For instance, the selection
of 256 units for the LSTM layers ensures sufficient capac-
ity to capture complex temporal dependencies in the traffic
data. The dropout rate of 0.5 effectively prevents overfitting
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Table 1 Notations used in the model description

Notation ~ Description

X Input traffic data shaped as (7', O)

T Number of time steps

(0] Output size (number of traffic features)

H, Intermediate output from the first LSTM layer

H, Intermediate output from the second LSTM layer
X, Reshaped input for CNNs with dimensions (7', O, 1)
C,,C,,C; Outputs from the three convolutional layers
P,,P,,P; Outputs from the max-pooling layers

F Flattened output from the final convolutional block
H_gneat Concatenated vector combining LSTM and CNN features

Y Final output (predicted traffic volume)

without significantly hindering the model’s learning ability.
The choice of 128 and 256 filters in the convolutional lay-
ers is based on the need to extract robust spatial features at
different scales, allowing the model to handle various pat-
terns in the traffic data. Additionally, other hyperparameters
like batch size and learning rate, detailed in the experiment
section, were fine-tuned to balance model complexity and
performance, ultimately leading to improved prediction
accuracy and generalization capabilities. The details of
our model construction and pseudocode are presented in
Algorithm 1.

Experiments

To validate our proposed methodology, we have formulated
a comprehensive experiment plan, that includes systematic
processing of raw data to deploying an optimized traffic pre-
diction model. As illustrated in Fig. 5, we initially address
the challenge of missing entries in the raw data using the
BGCP Imputer, thus preparing a complete dataset for subse-
quent analysis. This dataset is then meticulously divided into
separate sets for training, validation, and testing to establish
a solid foundation for model development and rigorous eval-
uation. The main part of our experiment involves construct-
ing the four aforementioned prediction models and tuning

Fig.5 Workflow diagram for
developing the data-driven traf-

fic volume predictor &°
z’(\s 7’

S ,/
$ BGCP
g Imputer
N

—_—

time
Raw Data

the hyperparameters based on their evaluation to obtain the
best-trained model. Subsequently, the performance of these
models was compared, and the best one was deployed. In the
following section, we discuss the dataset, evaluation criteria,
and experimental results in detail.

Data Description

We used our in-house VAMOS dataset for our experi-
ments. VAMOS (Verkehrsanalyse-, Management- und
Optimierungssystem) is a urban traffic management system
developed in collaboration with City of Dresden and the
Saxon State Road Administration. This system utilizes an
extensive network of over 1800 traffic detectors, including
loops, infrared sensors, floating vehicles, and roadside units
(RSUs) to facilitate around-the-clock traffic monitoring and
management. For this study, we consider a subset of the data
from 28 sensors, comprising loop detectors and infrared sen-
sors. The artery for data collection is shown in Fig. 6a. This
dataset provides traffic volume and speed measurements at
one-minute intervals. The distribution of the samples in the
VAMOS dataset is illustrated in Fig. 6b.

Evaluation metrics

The selection of appropriate evaluation methods for
both imputation and prediction is crucial. Following the
approach outlined in Yin et al. (2021), we consider three
widely used quantitative predictive error-based perfor-
mance metrics: Mean Squared Error (MSE), Root Mean
Squared Error (RMSE), and Mean Absolute Percentage
Error (MAPE). The MSE is a performance metric that
calculates the average of the squared differences between
the actual and predicted values. Its differentiability and
emphasis on larger errors make it well suited for opti-
mization tasks, although it remains sensitive to outliers.
RMSE is a regression metric representing the square root
of the average squared difference between the actual and
predicted values. Its emphasis on larger errors and rescal-
ing to the original units makes it especially useful when
significant deviations are undesirable. MAPE expresses
the average forecast error as a percentage of the actual

time
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Fig.6 Dataset components: a Dresden arterial network (source of the VAMOS traffic data); b example of traffic volume data recorded by

VAMOS sensors

values, aiding interpretability. However, this can be mis-
leading for near-zero actual values owing to the inflated
relative errors.

In this study, the RMSE and MAPE were used to assess
the performance of the imputation and prediction tasks.
Additionally, MSE was adopted as the loss function during
the training of the neural-network-based prediction mod-
els. The mathematical expressions of all the metrics are
defined as follows:

1 n 2
MSE = ;Zizl(yi - xi) (20)
relationship between extra missing and imputation error i
(]
= 38 2
€ e £
$ P
Z = / g
= =
w - / 5
2] T < w
E =3 = //. g
18— 36
16" . . L 34

5 10 15 20 25
number of extra missing in 10,000

Fig.7 Relationship between imputation errors and extra missing
(VAMOS)
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where y; represents the original data points, x; denotes the
imputed or predicted data, and n denotes the total number
of data points in the dataset.

Data Preparation

The raw VAMOS dataset contains some missing entries. We
can categorize the missing entries in the dataset into two
types: random missing and fiber missing. Random missing
entries occur unpredictably throughout the dataset and are
unrelated to each other. This is typical of data collected by
1-minute interval sensors. Fiber missing entries involve con-
tinuous missing data for a specific day or several days, poten-
tially due to sensor malfunctions. The missing rate in the
VAMOS raw data varies, with some sensors experiencing

Table 2 Overview of the final dataset

Attributes Values/Samples
Number of total samples 1,208,480
Number of sensors 28

Number of training set 725,088
Number of validation set 241,696
Number of testing set 241,696
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Fig.8 The variation of the loss function during the training

missing values up to 50%. Although this is not a frequent
occurrence, it may still interfere with prediction accuracy.
As the VAMOS data lacks ground truth Yan (2022), we
first attempted to reproduce the BGCP model’s imputation
results by emulating a similar missing pattern in two open-
source datasets-Guanzhou and Hangzhou-that are mentioned
in the original paper. The descriptions of the two open-
source datasets are provided in Appendix A. The detailed
results of our imputation experiment are shown in Table 4.
Our primary focus was to address the missing values in the
raw data; hence, we did not conduct extensive experiments
on imputation performance. However, we evaluated the
overall performance of imputation by intentionally remov-
ing some samples. The results of this evaluation are detailed
in Fig. 7. The y-axis of the MAPE is expressed in percent-
age and only indicates the relative increase compared to the
original, complete VAMOS dataset. It is noticeable that as
the quantity of additionally deleted data increases, the error
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o
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0.000
3 6 9 12 15 18
epoch
0.010
—— Training
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0.000
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(d) Linear Hybrid

Table 3 RMSE values for different models across various time hori-
zons

Time Hori- Parallel Hybrid ~ CNN LSTM Linear hybrid
zon (min)
0.9577 1.0245 1.1022  1.3392
5 1.0219 1.0756  1.1645 1.3189
10 1.0421 1.1163 1.2161 1.5913
15 1.1555 1.2527  1.2465 1.3848
20 1.1790 1.2698  1.3826  1.4653
40 1.4168 1.3734  1.5572  1.5477
60 1.6975 1.6280  1.7923 1.9191
120 2.3481 23125 25155 29841

of the BGCP imputation based on the VAMOS dataset also
rises significantly.

@ Springer
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We used this imputed data for training, validation, and
testing to evaluate our model’s performance. We split the
data in a 6:2:2 ratio for the training, validation, and testing
datasets, respectively. The details of the final processed data
are shown in Table 2.

Results
Experimental Results and Analysis

We conducted experiments on our prediction models by
using the imputed VAMOS dataset. The experiment involved
utilizing historical traffic volume data from all 28 sensors
over the past 40 min to forecast traffic volumes at these loca-
tions for several future intervals (e.g., 1, 5, and 10 min). The
input data for the traffic volume were structured in a tensor
with dimensions representing minutes by sensors. During
the training process, the loss function is determined by MSE.
It is employed to measure the distance between predictions
and ground-truth traffic volume. Thus, minimizing the MSE
is taken as the training goal of the four NN models, let the
set of all the trainable parameters in a neural network model
be O, and the training strategy can be described as follows:

0 =arg ngnMSE. (23)

The MSE for both the training and validation sets was
computed for all four models after each epoch. Using the
training of the 1-minute prediction model as an example,
Fig. 8 illustrates a consistent decrease in MSE across the
10 training epochs, indicating effective training. Notably,

during the last two or three epochs, the MSE for the valida-
tion set stabilized, despite initial fluctuations, which sug-
gests model convergence. However, it was observed that the
MSE values for the LSTM and linear hybrid models were
significantly higher than those for the other two models.
This implies that the training efficacy for these two models
might be somewhat constrained. Whether these limitations
translate to inferior performance on the test set remains an
area for further investigation. Given the data and settings
described, seven distinct predictors were developed for each
neural network architecture to accommodate various predic-
tion time horizons: 1 min, 5 min, 15 min, 20 min, 40 min,
60 min, and 120 min.

The evaluation of different predictors was conducted
using a test set comprising traffic volume data from Octo-
ber 10th to 15th, 2018. We only consider RMSE as the
primary goal of the study is to evaluate and compare the
prediction accuracy of different models Hodson (2022). For
this purpose, RMSE is an appropriate and sufficient met-
ric. It directly measures the deviation of predictions from
actual values, aligning with our study objectives. The aver-
age RMSE for these predictors was assessed across different
prediction time horizons, as depicted in Table 3. Although
the loss functions were computed on normalized data (rang-
ing from O to 1), the RMSE values reported here were cal-
culated using actual, unnormalized data, providing a more
intuitive performance measure in vehicles per minute. As
shown in table, LSTM predictors consistently underper-
formed compared to CNN and parallel hybrid models. This
underperformance is likely due to the LSTM’s emphasis on
temporal correlations and its approach of treating data from
various sensors as distinct time series. Consequently, as the

Fig.9 Relationship between
RMSE and prediction time 3.5
horizons during rush hour

3.0

RMSE in Veh/min
= [ N
vl o wul

-
o
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prediction horizon extended, the accuracy of LSTM-based
models diminished noticeably.

Table 3 highlights that the parallel hybrid model achieved
the lowest RMSE across most time horizons, indicating
superior performance in traffic volume prediction. The CNN
model followed closely, outperforming the LSTM model in
shorter time horizons but showing a less pronounced accu-
racy degradation over longer prediction periods. Conversely,
the linear hybrid model exhibited the highest RMSE values,
especially as the prediction horizon increased, reflecting its
relatively poorer performance in capturing complex traffic
patterns.

We also further investigated the performance of the four
models across different time horizons for specific scenarios,
such as during rush hours. Specifically, the focus was on the
6:00 to 10:00 timeframe, which corresponds to Dresden’s
morning rush hour. As illustrated in Fig. 9, the proposed
parallel hybrid structure consistently demonstrated superior
or comparable prediction accuracy using the RMSE metric.
In the overall traffic scenario, the CNN model performed
better in some cases. However, in special scenarios such as

) X 10° Data Distribution of Open-Source Dataset

Number of Data

0 10 20 30 40 50 60 70
Traffic Speed in km/h

(a) Guangzhou dataset.

rush hours, it is evident that the parallel hybrid model out-
performs or matches the performance of the other models,
reinforcing its robustness and reliability for short-term traf-
fic predictions. This indicates that the hybrid model is more
robust and consistently delivers superior performance across
various traffic conditions.

Conclusion and Future Works

In this paper, an imputation-enhanced traffic volume pre-
diction framework is proposed. The framework employs
a Bayesian Gaussian Copula Process (BGCP) based traf-
fic imputation model to prepare the data, ensuring that the
model receives error-free inputs. Additionally, a novel paral-
lel hybrid deep learning approach is designed to enhance the
predictability of traffic volume. The efficacy of the proposed
method is validated using the VAMOS dataset from Dres-
den, Germany. Experimental results demonstrate that the
framework can accurately predict traffic volume even with

<104 Data Distribution of Hangzhou Dataset

Number of Data
IS o

w
T

0 2 4 6 8 0 12 14 16 18 20
Traffic Volume in veh/min

(b) Hangzhou dataset.

Fig. 10 The data distribution: a speed data of Guangzhou dataset, and b volume data of Hangzhou dataset

Table 4 Values of RMSE and

- Location Type Error 10% 20% 30% 40% 50% 60% 70%
MAPE under random missing
(Guangzhou) Guangzhou Random RMSE 33384 3.3530 33671 3.3869 3.4258 3.4782 3.5387
MAPE 0.0774 0.0778 0.0781 0.0784 0.0790 0.0801 0.0813
Fibre RMSE  3.6025 3.7986 4.0524 4.5985 4.9651 5.4099 6.0790
MAPE 0.0793 0.0825 0.0858 0.0919 0.1002 0.1085 0.1190
Hangzhou Random RMSE 0.2577 03148 0.3978 0.4579 0.5141 0.6085 0.7762
MAPE 0.1441 0.1521 0.1596 0.1697 0.1812 0.1970 0.2353
Fibre RMSE 0.2258 03272 0.4266 04786 0.6072 0.7042  0.8869
MAPE 0.1433 0.1513 0.1608 0.1711 0.1808 0.1946 0.2417

@ Springer
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sparse raw data. This study emphasizes the integration of
spatiotemporal information for multi-step prediction.
Testing different imputation models is not the focus of
the paper; instead, we used a state-of-the-art model in this
study. We reproduced BGCP imputation results using two
open-source datasets and conducted an indirect evaluation of
imputation method. However, exploring different imputation
models and actively evaluating the imputation results warrants
a future research direction. The imputation algorithm in the
proposed framework is computationally demanding, and there
have been significant developments in deep learning-based
imputation models. Future work will focus on improving com-
putational efficiency and utilizing newer models for imputa-
tion. Additionally, the influence of road topology within the
urban network will be considered in the next stage (e.g., graph
convolution network (GCN) Rahman and Hasan (2023)).

Guangzhou and Hangzhou Dataset, China

The first one is a large-scale traffic dataset collected in
Guangzhou, China. The dataset is generated by a widely used
navigation application on smartphones, which contains travel
speed observations from 214 road segments in 61 days, the
time period from 1st August, 2016 to 30tk September, 2016.
The time interval of Guangzhou dataset is 10 min. The total
amount of observations is 1.88M. The data distribution of
Guangzhou dataset is shown in Fig. 10a. As for the Hangzhou
dataset, it contains the traffic volume information from 80
different metro stations in Hangzhou, China within 25 days.
The total amount of Hangzhou dataset is 21,600 samples. The
data distribution histogram is shown in Fig. 10b.
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