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Importance Weighted Gaussian Process Regression
for Transferable Driver Behaviour Learning in the

Lane Change Scenario
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Abstract—Due to advantages of handling problems with non-
linearity and uncertainty, Gaussian process regression (GPR) has
been widely used in the area of driver behaviour modelling. How-
ever, traditional GPR lacks the ability of transferring knowledge
from one driver to another, which limits the generalisation ability
of GPR, especially when sufficient data for driver behaviour mod-
elling are not available. To solve this limitation, in this paper, a novel
GPR model, Importance Weighted Gaussian Process Regression
(IWGPR) is proposed. The importance weight (IW) represents
the probabilistic density ratio between two drivers and the un-
constrained least-squares importance fitting (ULSIF) is applied to
calculate IW. Meanwhile, an IW-based model selection (IWMS)
method is proposed to help the model select optimal parameters.
Using IWGPR, sufficient historical data collected from one driver
can be used to model another driver with insufficient data, and thus
improve the generalisation ability of GPR. To verify the proposed
algorithm, a toy regression problem is used to illustrate the working
mechanism of IWGPR. With simulated and naturalistic driving
data, three experiments for driver behaviour modelling in the
lane change scenario, are designed and carried out. Experimental
results indicate that IWGPR performs better than GPR when
sufficient data are not provided by the new driver, which proves
the generalisation ability of IWGPR. Meanwhile, the comparative
study between different transferable driver behaviour learning
methods is detailed and analysed.

Index Terms—Transfer Learning, Gaussian Process Regression,
Driver Behaviour Learning, the Lane Change Scenario,
Importance Weighted Model Selection.

I. INTRODUCTION

MODELLING and predicting driver behaviours are crucial
to the design of intelligent transportation systems (ITS),

advanced driver assistance systems (ADAS) and autonomous
driving systems (ADS) [1]–[5]. To precisely model and predict
behaviours of drivers, in the recent decade, various machine
learning (ML) methods based on statistical learning [6], deep
learning [7]–[9] and reinforcement learning [10] have been
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developed and applied in a number of driving scenarios, such
as car following, lane changing, overtaking and many other
scenarios [2], [11].

As one of the most popular statistical ML methods, Gaussian
process regression (GPR) has gained increasing attention in
the area of driver behaviour modelling, because this kind of
method is capable of handling problems with high dimension-
ality, small samples and nonlinearity [12], [13]. Compared with
other popular ML approaches, such as artificial neural network
(ANN) and support vector machine (SVM), GPR can choose
hyper-parameters of model adaptively, evaluate predicted results
with the degree of confidence and flexibly infer results of the
model with non-parametric methods [12].

However, an important assumption for using GPR is that
training and testing datasets should follow the same distribution,
which is difficult to conform in real-world applications [14].
Therefore, GPR model trained using driving data collected from
one driver may not fit another driver with a different distribution
on driving data. For a new driver, a straightforward way to
build an effective driver model is to collect sufficient driving
data from the new driver and cover scenarios and situations as
many as possible. But in practical applications, the collection,
pre-processing and labelling of driving data are time-consuming
and need high financial support [15], [16]. Under such circum-
stances, an alternative approach named transfer learning (TL)
is proposed in recent years. TL can train an effective model
for the new task and scenario without collecting sufficient data
[17]. Based on TL and GPR, a novel model for transferable
driver behaviour learning, IWGPR, is proposed in this paper to
overcome limitations of traditional GPR.

Using the knowledge transferred from other tasks or datasets,
TL can speed up the learning process and improve the perfor-
mance of model in new tasks or datasets even when training data
are insufficient [17]. Therefore, TL has earned a great success in
fields of deep learning (DL) [18], reinforcement learning [19],
natural language processing (NLP) [20] and robot control [21].
In this paper, we pay more attention on the robotics control and
intelligent vehicles [10], [22]–[27], in which TL is applied as
an effective method to improve the performance of traditional
learning-based algorithms.

In the field of intelligent vehicles, a TL method modifying
traditional Procrustes analysis algorithm is proposed in [23],
[25], [26], which is firstly applied in [22] to learn robot models.
In these works, drivers in lane-changing scenarios with different
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driving behaviours can be modelled effectively by using mani-
fold alignment (MA) between two drivers. [24] and [27] propose
to model TL between two drivers by adapting marginal and con-
ditional distributions, which separate the process of distribution
adaptation and model training. The regression model itself is not
combined with TL by formulating regressive functions. Besides
the model for drivers using operational data (e.g., steering wheel
angle and vehicle longitudinal speed), models for recognizing
driving behaviour by images are also developed by combining
TL to speed up the learning process. For example, a DL method
based on convolutional neural network (CNN) is proposed in [7]
and [28] to recognize the drivers’ secondary task. A “fine-tune”
transferable method is combined with CNN to reduce time
consumption in the training process. Based on deep neural
network (DNN), Generative Adversarial Networks (GAN) is
developed for knowledge transfer in intelligent vehicles [29],
[30]. By combining GAN and TL, [30] proposes a “Real-to-
Virtual” domain unification method for image-based end to end
autonomous driving, which transfers real driving data to virtual
domain by unsupervised domain adaptation. [29] proposes an
unsupervised framework to automatically and accurately gen-
erate driving scenes for the verification of algorithms, which
provides a promising approach to measuring the robustness of
systems.

Although many works have been done to model driver
behaviours, researches based on statistical learning methods
mainly focus on generating a new dataset from different drivers
for model training process by MA and distributions adaptation,
in which the model itself has not been modified. Compared to
IWGPR, both methods above lack the ability in describing the
problem by density ratio in the objective function and cannot
combine data generation into the process of driver behaviour
modelling. The objective function and loss function of above two
models are independent and uncorrelated with the process of data
generation. Few researchers consider applying the density ratio
into GPR and formulate a novel object function, which applies
the ratio of marginal distribution into statistical ML methods.

The proposed method in this paper is based on the importance
weight (IW), which can be combined with kernel-based methods
by modifying the kernel function. As an important category
of TL, the IW-based TL methods are developed and applied
in regression and classification [31]–[33]. These methods can
apply the probabilistic density ratio into kernels for knowledge
transfer. Although the above related studies have combined TL
and GP, limited researches focus on the probabilistic density
ratio (IW) or covariate shift adaptation, which represents the
relation between source and target drivers. Here drivers with
sufficient and insufficient data are named as source and target
drivers, respectively. Different from existing researches, this
paper proposed a novel importance weighted Gaussian process
regression (IWGPR) method based on probabilistic density ratio
with the application on driver behaviour learning. Main contri-
butions of this research are as follows:

1) A novel transferable driver behaviour learning method,
IWGPR, is proposed by formulating IW into general GPR,
which effectively models the new driver with insufficient
driving data.

Fig. 1. A general lane change scenario.

2) To verify the proposed algorithm, the toy regression ex-
ample is selected to present the mechanism of IWGPR.
Driving data collected from the simulated environment,
highway and urban traffic road are applied to demonstrate
the performance of IWGPR in different scenarios.

3) The comparative study between different transferable
driver behaviour learning methods is detailed and pre-
sented. The proposed method, IWGPR, is developed by
estimating the density ratio of marginal distributions. In
experiments, compared to previous researches [24], the
influence of marginal and conditional distributions adap-
tation is analysed.

This paper is organised as follows. Section II shows the
problem formulation of IWGPR by comparing with general
GPR (without transfer) and the detailed methodology for the
proposed method is presented. Section III describes the novel
importance weighted model selection method for IWGPR and
illustrates the architecture for IWGPR by pseudo-code. Four
experiments: the toy regression problem and the application in
lane change scenarios with simulated, public naturalistic driving
data and on road collected driving data, are designed and detailed
in Section IV, respectively. Conclusions and future work are
presented in Section V.

II. IMPORTANCE WEIGHTED GAUSSIAN PROCESS REGRESSION

The lane change scenario considered in this paper is shown
in Fig. 1. In this scenario, the driver in the host vehicle tries to
change to the adjacent lane without hitting reference vehicles.
A successful lane change highly relies on the driver’s behaviour
of operating the steering wheel. The driving model built in this
paper only focuses on the steering behaviour of drivers and the
lateral control of host vehicle. The input and output of model are
the environmental information XEnv and the lateral operation
of drivers YOp, respectively. Following [23], the input XEnv =
{Xt

Env}nt=1 and output YOp = {Y t
Op}nt=1 at time t are defined

as follows:

Xt
Env = [xt

host, y
t
host, h

t
host, δ

t
host, v

t
host︸ ︷︷ ︸

Hostvehicle

, xt
Ref , y

t
Ref︸ ︷︷ ︸

Referencevehicles

] (1)

Y t
Op = δt+1

host (2)

where xt
host and ythost are longitudinal and lateral positions

of host vehicle at time t, ht
host and δthost denote the heading

angle and the steering wheel angle of host vehicle. vthost is the
velocity of host vehicle at time t. Analogously, xt

Ref and ytRef

are longitudinal and lateral positions of reference vehicles. δt+1
host

is the driver’s operation at time t+ 1.
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Fig. 2. An illustration of the proposed IWGPR.

The overall illustration of IWGPR is shown in Fig. 2. The
whole system consists of four parts: density ratio estimation,
importance weighted model selection, general GPR and the
training process of target model. The first part, density ratio
estimation, provides the ratio of marginal distributions (IW) be-
tween data of source and target drivers. Then the prior knowledge
of source driver with sufficient data and the specific knowledge
of target driver with insufficient data are both embedded in
IW, which can be used to formulate the object function for
TL. In the target model training process, IW calculated by the
first part is combined with the kernel function of general GPR.
Knowledge from source and target drivers is reused by the target
driver model. Therefore, insufficient data of target driver can be
modelled effectively with the help of TL from the source driver.
Meanwhile, the model selection based on IW is also developed
and applied in the target model, which automatically provides
optimal parameters in the training process. Finally, the target
model, IWGPR, is built by sufficient source data and insufficient
target data.

In order to realise the proposed method above, firstly, the
density ratio estimation in TL-based regression is introduced
and emphasized, which is the basis of IWGPR. Secondly, with
the combination of IW and general GPR, a novel TL-based
GPR, IWGPR, is developed and detailed. Thirdly, considering
the model selection for hyper-parameters in GPR, an importance
weighted model selection method (IWMS) is proposed based on
the negative log density loss function.

A. Density Ratio Estimation

Density ratio estimation is applied to calculate the ratio of
marginal distributions between insufficient driving data of two
drivers. In ML methods with kernels in the objective function,
IW calculated by density ratio estimator can be integrated with
the kernel function, which provides a novel way to modify the

model of target driver by reweighting driving data of source
driver.

Unconstrained least-squares importance fitting (ULSIF) is a
typical method for estimating the density ratio between dis-
tributions of two datasets and has been widely used in model
adaptation problems. In this paper, ULSIF is selected to estimate
the density ratio between two different drivers. Using ULSIF,
the IW estimation problem can be transformed to a quadratic
programming (QP) problem, which can be solved by common
QP solvers [33].

In the model training process of regression or classification,
the optimal model is built by minimising the following expected
risk [17]:

θ∗ = argmin
θ∈Θ

E(x,y)∈P [l(x, y, θ)] (3)

where l(x, y, θ) is the loss function with parameter θ. Since it
is hard to estimate the probability distribution P , we chose to
estimate the empirical risk minimization (ERM) [34]:

θ∗ = argmin
θ∈Θ

1
n

n∑
i=1

[l(xi, yi, θ)] (4)

where n is the number of training samples. In this research, the
optimal model is learnt using insufficient driving data in the
target domain:

θ∗ = argmin
θ∈Θ

∑
ζ∈DT

P (DT)l(ζt, θ) (5)

where ζt = [Xt
Env, δ

t+1
host] is the combination of the environmen-

tal information XEnv and the driver’s lateral operation δt+1
host,

l(ζt, θ) is the loss of objective function. If P (DS) = P (DT),
the model trained from the source domain can be applied in the
target domain:

θ∗ = argmin
θ∈Θ

∑
ζ∈DS

P (DS)l(ζt, θ) (6)

However, an important and fundamental assumption is that
distributions of driving data from two drivers are different,
P (DS) �= P (DT). Therefore, directly replacing P (DT) with
P (DS) is unreasonable and insufficient data cannot successfully
build the target model. In order to solve problems above, a
rational conversion is operated on the primary objective function
(6):

θ∗ = argmin
θ∈Θ

∑
ζ∈DT

P (DT)

P (DS)
P (DS)l(ζT,θ)

≈ argmin
θ∈Θ

ns∑
i=1

PT(X
i
Env,T, δ

i
host,T)

PS(Xi
Env,S, δ

i
host,S)

× PS(X
i
Env,S, δ

i
host,S)l(ζS,i,θ) (7)

With the assumption for transductive TL in [17],
P (YOp,T|XEnv,T) = P (YOp,S|XEnv,S), the following objec-
tive function is obtained:

θ∗ ≈ argmin
θ∈Θ

ns∑
i=1

PT(ζT,i)

PS(ζS,i)
PS(ζS,i)l(ζS,i,θ) (8)
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Meanwhile, the probability density ratio is

ω =
PT(X

i
Env,T, Y

i
Op,T)

PS(Xi
Env,S, Y

i
Op,S)

=
PT(X

i
Env,T)

PS(Xi
Env,S)

(9)

where XEnv and YOp are the input and output of model. So
far, the optimal problem for target driver model is split into
two phases: calculating the probability density ratio ω and
minimizing the objective function (8).

ULSIF is developed based on the hypothesis that distributions
of source and target driving data are independent identically
distributed (i.i.d), which can be described as follows:

DT = {Xi
Env,T}NT

i=1
i,i,d→ pT(XEnv,T) (10)

DS = {Xi
Env,S}NS

i=1
i,i,d→ pS(XEnv,S) (11)

where NS and NT is the number of samples collected from
source and target driver, respectively.

In order to estimate and describe ω, a linear model is applied:

ω̂(XEnv) = Σb
l=1αlϕl(XEnv) (12)

where ϕl(XEnv) is the basic function and αl is the model
parameter which can be obtained by the model training process.
b and ϕl(XEnv) can be calculated by samples from source
and target drivers. Here Gaussian kernel is chosen as the basic
function. Meanwhile, a part of samples from the target driver
is selected as the Gaussian kernel centre. Therefore, the linear
model (12) above is modified as:

ω̂(XEnv) = Σb
l=1αlKσ(XEnv,X

l
Env,T) (13)

where Kσ(·) is Gaussian kernel function and αl is the model
parameter, with the kernel width σσ:

Kσ(XEnv,XEnv,T) = exp

(
−‖XEnv −XEnv,T‖2

2σσ
2

)
(14)

In the above transformed linear model, model parameters
obtained in the model training process can be calculated by the
following least-square-based objective function [33]:

J(α) =
1
2

∫
(ω̂(XEnv)− ω(XEnv))

2ptr(XEnv)dx

=
1
2
αTHα− hTα+ C ′ (15)

where C ′ is a constant. H and h are the NT ×NT matrix and
the vector with NT dimensions, which are approximated by
following equations:

Ĥn,n =
1
NS

NS∑
n′′

K(Xn′′
Env,S,X

n′′
Env,T)K(Xn′′

Env,S,X
n′′
Env,T)

(16)

ĥn =
1
NT

NT∑
n′=1

K(Xn′
Env,T,X

n
Env,T) (17)

And then the expression for optimal model parameters are as
follows:

α̂ = argmin
α

(
1
2
αTHα− ĥTα+

γ

2
αTα

)
(18)

where γ
2 α

Tα is the part for L2 regularisation. The above equa-
tion is formulated as an unconstrained convex quadratic program
(QP). Solving this QP problem, the following analytical solution
can be obtained:

α̂ = (Ĥ+ γINte
)ĥ (19)

Combined with (12), the final expression of IW-based analyt-
ical solution is calculated by:

ω̂(XEnv) = max

(
0,

NT∑
n=1

α̂nKσ(XEnv,XEnv,T)

)
(20)

B. Transferable Gaussian Process Regression

In order to deal with the problem of modelling with different
data distributions for training and test sets, several studies have
been done to develop transferable and adaptive GPRs [35]–[37].
However, many of these methods are applied in highly simplified
scenarios, and rarely focus on real-world problems involving
uncertain human behaviours. The proposed method in this paper
considers the density ratio between driving data of different
drivers and incorporates the density ratio estimation into GPR,
which can model the behaviour of target driver with insufficient
driving data by using prior knowledge transferred from the
source driver.

The proposed method is developed based on IW, which can be
efficiently calculated by density ratio estimators. In the process
of IW-based instance level TL, the density ratioω only describes
the relation between two drivers, which cannot be directly ap-
plied in the specific scenario. Therefore, inspired by [32], the
algorithm proposed in this paper combines GPR with the density
ratio, thus developing a novel TL method, IWGPR.

From the view of function space, GP is defined to describe the
distribution over functions and operates Bayes inference directly
in function space. According to [12], an explicit definition is pro-
vided: GP is described as a gather of random variables with joint
Gaussian distributions. The characteristic of GP is completely
determined by mean function m(XEnv)and covariance function
k(XEnv,X

′
Env):

m(XEnv) = E[f(XEnv)] (21)

k(XEnv,X
′
Env)

= E[(f(XEnv)−m(XEnv))(f(X
′
Env)−m(X′

Env))] (22)

where XEnv,X
′
Env ∈ Rd are the environmental information.

With the pre-processing,m(XEnv) is modified as the zero-mean
function. Therefore, a simple Gaussian process can be described
by:

f(XEnv) ∼ GP (m(XEnv), k(XEnv,X
′
Env)) (23)
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With the Gaussian noise ε ∈ N(0, σ2
n), the prior distribution

of YOp can be obtained and shown as below:

YOp ∼ N(0,K(XEnv,XEnv) + σ2
nIn) (24)

Then, the joint distribution of prediction and observed values
can be described by:[

YOp

f∗

]
∼

N

(
0,

[
K(XEnv,XEnv) + σ2

nIn K(XEnv, x
∗
Env)

K(x∗
Env,XEnv) K(x∗

Env, x
∗
Env)

])
(25)

where K(XEnv,XEnv) = Kn = (kij) is the symmetric posi-
tive definite covariance matrix and K(XEnv,XEnv) ∈ Rn×n.
kij = k(Xi

Env,X
j
Env) is used to measure the correlation be-

tween Xi
Env and Xj

Env . K(XEnv, x
∗
Env) = K(x∗

Env,XEnv)
T is

the covariance matrix between test points x∗ and the input vector
XEnv. K(x∗

Env, x
∗
Env) is the covariance matrix of x∗ itself and

In ∈ n× n is the unit matrix. Here we choose Gaussian kernel
with width σf as the covariance function:

K(XEnv,X
′
Env) = exp

(
−‖XEnv −X′

Env‖2

2σ2
f

)
(26)

Inspired by IW-based regression and classification methods,
the density ratio ω need to be combined with kernel functions
in GPR. By embodying ω in kernel functions, the prior knowl-
edge from source driver can be reflected in the target model.
Therefore, the distribution of modified GPR is as follow:

YOp ∼ N(0,KTransferK(XEnv,XEnv) + σ2
nIn) (27)

For the above equation, the Gaussian noise assumptionε ∈
N(0, σ2

n) is similar to general GPR. Meanwhile, the joint distri-
bution of observed values YOp and predictions f∗ for IWGPR
is modified as:[

YOp

f∗

]
∼ N×

(
0,

[
KTransferK(XEnv,XEnv) + σ2

nIn K(XEnv, x
∗
Env)

K(x∗
Env,XEnv) K(x∗

Env, x
∗
Env)

])
(28)

Let

KTransfer = K(XEnv,XEnv)
Tωv

=

⎛
⎜⎝ (k11) · · · (k1i)

...
. . .

...
(ki1) · · · (kii)

⎞
⎟⎠
⎛
⎜⎝ ω̂v

1 · · · ω̂v
1

...
. . .

...
ω̂v
i · · · ω̂v

i

⎞
⎟⎠ (29)

The joint distribution between YOp and f∗ is combined with
the density ratio ω, which indicates that the prior knowledge
from source driver is considered in specific problems of target
driver. With the help of samples from the source driver, the joint
distribution of driving data can accurately describe characteris-
tics of the target model. The posterior distribution of prediction
is calculated:

f∗|XEnv,YOp, x
∗
Env ∼ N(f̄∗, cov(f∗)) (30)

Finally, the mean prediction value and covariance of IWGPR
are deduced:

f̄∗ = K(x∗
Env,XEnv)

× [KTransferK(XEnv,XEnv) + σ2
nIn]

−1
KTYOp

(31)

cov(f∗) = K(x∗
Env, x

∗
Env)−K(x∗

Env,XEnv)KTransfer

× [KTransferK(XEnv,XEnv) + σ2
nIn]

−1

×KTransferK(XEnv, x
∗
Env) (32)

III. IMPORTANCE WEIGHTED MODEL SELECTION (IWMS)

In order to realise and apply IWGPR in specific scenarios,
parameters of IWGPR need to be determined in the model
training and model selection process. Each kernel has its own
parameters independently. For the proposed method in this
paper, undetermined parameters are as follows: Gaussian noise
parameter σn, Gaussian kernel width σf and the level of IW υ.

Cross validation (CV) is a common and effective method for
model selection (MS), which randomly divides whole training
data into K folds and leaves one fold out for test [38]. Con-
sidering that the target of TL is to transfer the instance level
knowledge from source driver to target driver, the density ratio
ω of two datasets needs to be taken into account [39]. In this
paper, based on CV, IWGPR considers the IW in MS. It can be
described as follow:

WIWCV =
1
K

K∑
k=1

1
|DS,k|

∑
(ζS∈DS,k)

ω(XEnv,S)

× loss(f̂k(XEnv,S),YOp,S) (33)

whereK is the number of folds in K-fold CV.ω(sS)is the density
ratio and loss(·)is the loss function which is given by:

loss(·) = log p(Yi
Op|Xi

Env,Y
−i
Op,θ)

=
1
2
log cov(f∗,i)

2
i +

(Yi
Op − f∗,i)

2

2cov(f∗,i)
2
i

+
1
2
log 2π

(34)

Finally, the IW-based model selection process (IWMS) ob-
tains optimal parameters by:

(σ̂f , σ̂n, υ̂) = argmin
(σf ,σn,υ)

WIWMS(σf , σn, υ) (35)

When the proposed method unites ULSIF, IWGPR and
IWMS, the integrated system is shown by pseudo code.

IV. EXPERIMENTS AND ANALYSIS

In order to highlight basic characteristics of IWGPR and
test the performance of proposed algorithm, four experiments
are designed, including one experiment for a toy regression
problem (Experiment I), one experiment using data collected
from a driving simulator (Experiment II), one experiment using
driving data of UAH-DriveSet (Experiment III), and the final
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Algorithm 1: IWGPR.

Input: {Xj
Env,S}NS

j=1, {Xj
Env,S}NT

j=1, {Yj
Op,S}NS

j=1

Output: mean f̄∗, variance V [f̄∗]
1: Calculate Ĥn,n and ĥn by (16) and (17)
2: Obtain the optimal model parameter α̂ in (12) by (19)
3: Obtain ω̂v = uLSIF ({Xj

Env,S}NT
j=1, {Xj

Env,S}NS
j=1)

by (20)
4: for each candidate of σf do
5: for each candidate of υ̂ do
6: for each candidate of σn do
7: Calculate K(XEnv,XEnv) by (26)
8: Calculate KTransfer by (29)
9: L =

cholesky(KTransferK(XEnv,XEnv) + σ2
nIn)

10: α = LT\(L\KTYOp,S)

11: Get the f̄∗ and V [f∗] by (30∼32)
12: Obtain the loss(·) by (34)
13: Calculate the total loss WIWCV in each

episode by (33)
14: end for
15: end for
16: end for
17: Obtain optimal parameters σ̂f , υ̂, σ̂n by (35)
18: Get K̂ σ̂f

and K̂Transfer(σ̂f ,υ̂,σ̂n) by (26) and (29)
19: Get the output f̄ and V̄ [f∗] by (31) ∼ (32)
20: return mean f̄∗, variance V [f̄∗]

Fig. 3. Relationship between four experiments.

experiment using naturalistic driving data collected in the urban
traffic scenario (Experiment IV).

In Experiment Ⅰ, a simple toy regression problem is selected
to show basic characteristics and mechanism of IWGPR. Then,
based on the mechanism observed from Experiment I, three
experiments with different data sources are designed to test
the model performance and adaptability of IWGPR in the lane
change scenario. Details of four experiments and relevant anal-
ysis are shown in following four subsections. The relationships
between four experiments are shown in Fig. 3.

A. Experiment I: Toy Regression Problem

In order to illustrate the effectiveness and mechanism of
proposed method, firstly, two readily comprehensible datasets

Fig. 4. Different distributions of two datasets and the estimation of density
ratio. (Green line: estimation, red line: groundtruth, blue line: the distribution
of the source dataset, black line: the distribution of the target dataset).

following different distributions with one-dimension are used.
Following [32], [33], datasets with known distributions is used
to verify the proposed method in Experiment Ⅰ.

Firstly, let densities of source and target datasets follow two
distributions:

PSource(x) = φ

(
x; 1,

(
1
2

)2
)

(36)

PTarget(x) = φ

(
x; 2,

(
1
4

)2
)

(37)

where φ(x;μ, σ2) is the normal distribution with variance σ2

and meanμ. Detailed distributions ofPSource(x) andPTarget(x)
are shown in Fig. 4 (blue and black), respectively. The target
function f(x) is sinx. The relationship between input x and
output y is as follow:

y = f(x) + ε (38)

where ε = φ(ε; 0, ( 1
4 )

2). Set the number of source and target
samples as 50 and 1000, respectively.

Fig. 4 shows the performance of density ratio estimation.
PSource(x) and PTarget(x) are distributions of data in source
and target datasets. ω(x) is the ground truth density ratio, while
ω(x)− ULSIF is the density ratio calculated by ULSIF. Com-
paring IWGPR with GPR, results in Fig. 5 and Fig. 6 indicate
that IWGPR can fit noisy toy data with a higher accuracy than
GPR. It demonstrates the positive effect of IW from the source
dataset.

B. Experiment II: Application on the Lane Change
Scenario-Simulated Driving Data

1) Data Collection: The target of proposed method
(IWGPR) is to transfer knowledge at the instance level from the
source driver (sufficient data) to the target driver (insufficient
data) and solve the specific problem for the target driver by
building an integrated target model based on GPR. The lane
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Fig. 5. Fitting results of samples in the target dataset. (Red line: groundtruth,
pink line: IWGPR, blue line: GPR).

Fig. 6. The comparison of regression performance for IWGPR and GPR
(Groundtruth: test samples generated in the toy experiment, Predict: outputs
of different methods).

change scenario with one front reference vehicle is chosen for
the application and the driver’s operation for steering wheel is
selected as the action YOp. The driver model is built to imitate
the human driver’s operating process from state to action in the
specific scenario. A series of experiments are designed to vali-
date the effect of IWGPR, considering that different drivers have
different driving characteristics during the lane-changing which
can be presented by distributions of driving data. For example,
as to an identical lane change, steering wheel trajectories of two
different drivers are distinct obviously (Fig. 8). The lane change
scenario is shown in Fig. 1.

Collecting driving data of serval drivers for model training
process of IWGPR is the first step where the Prescan/Simulink
simulation platform is used. In order to accomplish human-
vehicle-road close-loop, Logitech G29 is equipped to collect
the human drivers’ operations for steering wheel and three
screens are applied to provide the view of driving condition to
drivers. In the experiment, drivers in the host vehicle are asked to
accomplish the whole lane change operation according to their

Fig. 7. The driving simulator for data collection.

Fig. 8. The comparison for different drivers with steering wheel angle.

own driving styles and judgements by considering states of host
and reference vehicles.

2) Analysis of Different Drivers: The proposed TL-based
GPR is built on a basic assumption: source and target drivers
have different characteristics. As for the specific lane change
scenario, different drivers present different driving characteris-
tics on the same condition. A primary comparison is shown in
Fig. 9.

In the lane change scenario above, under the same driving
environment, three drivers operate the steering wheel to realize
the lateral control of vehicle according to their own driving
experience. As a whole, for the trajectory of steering wheel
which can directly reflect operations of drivers, different drivers
perform different behaviours under the same driving condition.
For the detailed comparison in 22∼26s, 26∼28s and 28∼29s,
there exists evident difference for three drivers. From the view
of trajectory, three drivers can be easily distinguished (Fig. 9).

3) Baseline Methods and Metric: In order to compare the
proposed algorithm with our previous methods in transferable
driver behaviour modelling. Balance distribution adaptation
(BDA) is selected for the comparative study. while IWGPR only
models the marginal distribution in (7-9), BDA considers both
conditional and marginal distributions in the modelling process.

D(DT,DS) ≈ (1 − μ)D1(P (XEnv,T), P (XEnv,S))

+ μD2(P (YOp,S|XEnv,T), P (YOp,T|XEnv,S)) (39)

whereD1 and D2 represent distances for marginal and condi-
tional distributions, respectively. The distance D is measured
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Fig. 9. The comparison of different drivers from different aspects.

by maximum mean discrepancy (MMD) in reproducing kernel
Hilbert space (RKHS).

In order to evaluate the performance of target driver model,
two indexes are used: mean squared error (MSE) and signal to
deviation ratio (SDR).

MSE =
1

N test

Ntest∑
i=1

(ŷi − yi)
2 (40)

SDR = log
ΣNtest

i=1 y2
i

ΣNtest

i=1 (ŷi − yi)
2 (41)

4) Results of TL: After data collection and analysis of differ-
ent distributions, driving data of three drivers, namely driver
A, B and C, are selected for the presentation of TL results.
Similar experiments are carried out between every two drivers
(A&B, B&C, C&A). For purpose of presenting the effectiveness
of IWGPR, between every two drivers, two TL experiments
are carried out (A → B, B → A, B → C, C → B, C → A,
A → C).

Aggregate results are shown in Table I. As for a better
demonstration, TL results from driver A to driver B are detailed,
which include a continuous prediction of steering wheel angle
with different abscissas, the performance of regression results
by coefficient of determination and comparison for different

methods. The discussion of detailed results is presented in the
next part.

5) Results Discussion: According to TL results from driver
A to driver B, in general, as training data of target driver
increasing from 40 to 250, MSE decreases and SDR increases
for both IWGPR and GPR (IWGPR-MSE: 10.1 to 1.9 deg2,
IWGPR-SDR: 15.3 to 23.3 dB, GPR- MSE: 15.4 to 3.4 deg2,
GPR- SDR: 10.7 to 20.0 dB). It indicates that sufficient data
from target driver is conducive to improve the performance of
IWGPR with sufficient data from source driver.

Comparing predicting results of GPR using target data with
IWGPR proposed in this paper, the performance of IWGPR
is better than GPR. The MSE gap of both models decreases
from 5.3191 to 1.5651 deg2 with training data of target driver
increasing from 40 to 250 (with SDR gap from 4.6692 to 3.2397
deg2). The gap between two models is filled gradually, which
shows that the superiority of IWGPR is distinct with a small
number of training data from the target driver. IWGPR can
contribute a better target model comparing to GPR without TL.

IWGPR is a GPR model with the ability of TL. In order
to demonstrate the performance of prediction in regression,
the case of continuous test points from the target driver is
selected for detailed presentation with the situation of N = 250
in Fig. 11. With N = 250, the accuracy of GPR is relatively
high for the trajectory of steering wheel angle. Meanwhile, the
proposed TL method, IWGPR, has a better performance at time
4∼11s, 23∼26s and 29∼30s, which reflects the effect of prior
knowledge from the source driver (driver A). Fig. 13(a) and (b)
present trajectories of steering wheel angle relative to positions
of host vehicle.

Fig. 12 presents the performance of linear regression with
N = 250. Comparing to GPR, fitting results of IWGPR are more
similar to ground truth (Y = G), which intuitively illustrates su-
periority of IWGPR. The same conclusion can also be discovered
in Fig. 11. As shown in Table II, comparative results of training
and testing time for three methods are detailed. The training time
of IWGPR includes the process of density ratio estimation, and
the time cost of two distributions adaptation is also contained in
the training time. BDA obtains the fastest speed in the test and the
shortest in training, while IWGPR presents a poor performance
in time consumption. Compared to the regression process of
GPR, Gaussian mixture regression (GMR) used in BDA has a
better performance in time cost.

Fig. 10(a) and (b) also shows the comparison between IWGPR
and BDA, which are both TL-based algorithms for driver be-
haviour modelling. With the increasing of target samples, MSE
of both methods decrease and are lower than general GPR
(without TL), which demonstrates the positive effect of TL. And
the error gap of BDA and IWGPR is lower than 1 deg2 with a
slight fluctuation. It indicates that although BDA considers the
conditional distribution compared to IWGPR, the improvement
in prediction is not reflected observably.

C. Experiment III: Application on the Lane Change
Scenario—UAH-DriveSet

1) The Description of Naturalistic Data: Above experiments
in Section IV.A and Section IV.B verify the proposed algorithm
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TABLE I
EXPERIMENTAL RESULTS FOR SIMULATED DRIVING DATA (EXPERIMENT II)

TABLE II
COMPARATIVE RESULTS OF TRAINING AND TEST TIME

Fig. 10. The MSE and SDR for IWGPR and GPR from driver A to driver B
(Simulated driving data).

Fig. 11. The comparison for different methods withcontinuous test points
(Trajectories of steering wheel).

Fig. 12. The comparison of regression performance for IWGPR and GPR.

IWGPR by the toy example and simulated driving data. Com-
pared to naturalistic driving data, driving data collected in the
simulated environment are ideal without noise, which cannot
fully describe the driver’s lane change behaviour in the real
and complicated road conditions. Therefore, UAH-DriveSet is
applied to verify the proposed algorithm.

UAH-DriveSet covers driving data of six different drivers with
different vehicles (Mercedes, Audi, etc.), two road conditions
(motor-way and secondary road) and three different driver styles
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TABLE III
EXPERIMENTAL RESULTS FOR NATURALISTIC DRIVING DATA IN THE HIGHWAY SCENARIO (EXPERIMENT III)

Fig. 13. The comparison for different methods with a continuous test points
from different aspects.

(normal, drowsy and aggressive). Types of collected data are
shown in Table IV. The interface of the playback software is
shown in Fig. 14. The detailed description of drivers and vehicles
involved in the UAH-DriveSet can be found in [39]. For the
lane change scenario, useful driving data are cut out manually
from the whole dataset. Collected data in UAH-DriveSet are
partially missing, so the pre-processing is conducted for nat-
uralistic driving data to satisfy requirements of the modelling

TABLE IV
AN ILLUSTRATION OF COLLECTED DATA

Fig. 14. The interface of playback software for naturalistic driving data [39].

process, which is accomplished by the interpolation method and
the moving average filter. Meanwhile, the steering wheel angle
is not recorded in UAH dataset and the front wheel angle is
selected as the output of model.

2) Results and Discussion: Similarly, with experiments in
Section IV.B, the number of samples from the target driver is
changed to describe and compare the performance of IWGPR.
In this experiment, the variation of samples from the target
driver ranges from 10 to 80. Experimental results are shown
in Table IV. Compared to the general GPR, IWGPR performs
better with the number of samples changing from 10 to 40. With
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Fig. 15. The SDR and MSE for IWGPR and GPR from driver A to driver B
(Naturalistic driving data).

samples of target driver increasing from 50 to 80, the gap of
error between general GPR and IWGPR decreases gradually.
Both results indicate that Experiment III verifies the conclusion
in Experiment II. Beside simulated driving data, the experiment
with naturalistic driving data is also conducted to verify IWGPR,
which reflects the adaptability of proposed algorithm.

As for naturalistic driving data, results in Fig. 15(a) and (b)
indicate that even if with relative more target samples, the
performance of IWGPR is better than general GPR. It illustrates
that the TL-based method utilizes the prior knowledge from the
source driver (driver A). Data collected from source driver in the
lane change scenario improve the performance of target driver
model, which verifies the positive effect of TL in the driver
specific-behaviour learning. Although the experiment based on
naturalistic driving data cannot obtain ideal results in some
special cases (N = 20 in Fig. 15), overall results still show the
improvement of TL compared to the non-TL method. Non-ideal
situations that the TL method cannot reflect the effect may be
caused by the noise in mobile-based data collection process. As
for the comparison of IWGPR and BDA in Fig. 15(a) and (b), the
performance in MSE is same as that in Experiment II. However,
the SDR of BDA is higher than IWGPR, which presents a better
performance of fluctuation in prediction.

Fig. 16. (a) The sensor equioment on the intelligent vehicle platform. (b) The
urban scenario for naturalistic data collection. (Red line: the schematic trajectory
of right lane-changing). (c) The illustration of detection from point cloud.
(d) The fusion result of Lidar and camera.

D. Experiment IV: Application in the Urban
Lane-Changing Scenario

Scenarios extracted from UAH-DriveSet are high-speed
Lane-changing behaviours, which mainly occur in the highway.
And operationsYOp = {Y t

Op}nt=1 in Experiment III are deduced
from trajectories of vehicles, which are different from driver
operations collected from CAN bus. In order to fully verify the
performance of IWGPR, naturalistic driving data collected in
the urban scenario are applied in Experiment IV.

1) Data collection and Pre-Process: Similar to [40], the in-
telligent vehicle platform for data collection is shown in Fig. 16.
The equipment of sensors is detailed as follows:

• OxTs integrated navigation unit: The information of navi-
gation unit includes latitude and longitude, heading angle
and longitudinal velocity.

• BYD CAN bus network: The vehicle CAN bus network
provides steering wheel angle.

• Two Mako cameras: The camera provides the front vision
of vehicle.

• Velodyne Lidar HDL-32E: Lidar is applied to detected sur-
rounding vehicles by fusing the information from camera.

In Experiment IV, three drivers with different driving ex-
perience participate the data collection in the urban scenario
(Beijing, China). In order to extract the lane-changing scenario,
collected data is pre-processed and selected manually. Moving
average filter (MAF) is applied to smooth driving data with filter
window size W = 4.

2) Experimental Results and Discussion: Experimental re-
sults are shown in Table V. With the increasing of samples in the
target domain, comparative results of IWGPR and two baseline
methods are detailed in Fig. 17. Similar to the trend in Exper-
iment II and Experiment III, MSE of three methods decrease
when the number of target samples increase from 10 to 80.

Compared to general GPR, IWGPR performs better with
different samples. The gap of error between IWGPR and GPR
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TABLE V
EXPERIMENTAL RESULTS FOR NATURALISTIC DRIVING DATA IN THE URBAN SCENARIO (EXPERIMENT IV)

Fig. 17. Comparative results for MSE and SDR in the urban scenario (Exper-
iment IV).

decrease from 0.18 to 0.13 deg2 gradually. It indicates that
TL-based method IWGPR can successfully model TL between
different drivers. As for the comparative result of SDR, IWGPR
obtains higher results than general GPR in different conditions,
which shows the stability of IWGPR in prediction.

The qualitative analysis above demonstrates the advantage
and performance of proposed method by comparing to general
GPR (without TL). As for the comparison between different
transferable driver behavior modelling methods, the perfor-
mance of BDA is detailed in Fig. 17. With different number
of target samples, the performance of BDA is slightly better
than IWGPR in SDR and MSE, which demonstrates the condi-
tional distribution improve the performance, while IWGPR only
considers to adapt the marginal distribution.

V. CONCLUSION AND FUTURE WORK

In this paper, in order to solve the problem of knowledge trans-
fer for driver behaviour modelling, an IW-based TL method,
IWGPR, is proposed. Based on importance weight (IW), the
proposed method is capable of using data collected from source
driver to model the target driver and transfer the knowledge
between two drivers. To estimate IW between different drivers
efficiently, optimisation-based estimator, ULSIF is applied in
the proposed method. After the estimation of IW, an impor-
tance weighted model selection (IWMS) method is developed

to choose optimal parameters for IWGPR and improve the
accuracy of model. Because of the ability of TL, IWGPR can
significantly improve the performance of general GPR.

To test the proposed algorithm, four experiments are con-
ducted. The toy regression example in Experiment Ⅰ illustrates
basic characteristics and mechanism of IWGPR. In Experiment
II, with data of three drivers collected from a driving simulator,
the proposed IWGPR performs better than general GPR with
a higher accuracy. In Experiment III, naturalistic driving data
collected in the highway are used to verify the adaptability of
IWGPR. Because of TL, IWGPR can adapt to different drivers
effectively and improve the performance of model for drivers
with insufficient data. In order to fully verify the performance
of IWGPR, naturalistic driving data are collected in the urban
scenario and applied in Experiment IV, which contain driver
operations from vehicle CAN bus. The last experiment demon-
strates the effect of IWGPR in the urban lane-changing scenario.
The main possible application of proposed algorithm IWGPR is
to online collect the new driver’s driving data for the model
training and generate the output for ADAS, which can be used
as a reference value for the operation of new driver.

Besides the application in the lane change scenario, as a
general method, IWGPR can also be extended to other scenarios.
In our future work, scenarios with complicated traffic situations
will be considered.
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