
An Ensemble Learning Framework for Vehicle Trajectory Prediction in
Interactive Scenarios*

Zirui Li1,2,3, Yunlong Lin1,2, Cheng Gong2, Student Member IEEE,
Xinwei Wang3, Qi Liu2, Jianwei Gong2, Member IEEE, Chao Lu2, Member IEEE .

Abstract— Precisely modeling interactions and accurately
predicting trajectories of surrounding vehicles are essential to
the decision-making and path-planning of intelligent vehicles.
This paper proposes a novel framework based on ensemble
learning to improve the performance of trajectory predictions
in interactive scenarios. The framework is termed Interac-
tive Ensemble Trajectory Predictor (IETP). IETP assembles
interaction-aware trajectory predictors as base learners to
build an ensemble learner. Firstly, each base learner in IETP
observes historical trajectories of vehicles in the scene. Then
each base learner handles interactions between vehicles to
predict trajectories. Finally, an ensemble learner is built to
predict trajectories by applying two ensemble strategies on the
predictions from all base learners. Predictions generated by the
ensemble learner are final outputs of IETP. In this study, three
experiments using different data are conducted based on the
NGSIM dataset. Experimental results show that IETP improves
the predicting accuracy and decreases the variance of errors
compared to base learners. In addition, IETP exceeds baseline
models with 50% of the training data, indicating that IETP is
data-efficient. Moreover, the implementation of IETP is publicly
available at https://github.com/BIT-Jack/IETP.

I. INTRODUCTION

Developing intelligent vehicles with socially compliant
and conventional driving behaviors is significant to traffic
safety and road mobility [1]–[3]. In interactive scenarios
such as urban roads and freeways, the dynamic motions of
surrounding vehicles limit the availability of some driving ac-
tions. Thus, intelligent vehicles need to predict future trajec-
tories of surrounding vehicles before making decisions, and
planning paths [4]. Accurately predicting the future trajecto-
ries of surrounding vehicles becomes a fundamental ability
of intelligent vehicles. However, predicting trajectories in
interactive scenarios is challenging due to the complexity and
uncertainty of interactions between vehicles. For example,
various drivers’ driving styles and different destinations of
vehicles reveal the complexity. The randomness of driving
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behaviors indicates the uncertainty [5]. Therefore, how to
precisely model interactions between vehicles becomes a cru-
cial problem of predicting vehicle trajectories in interactive
scenarios.

Compared to traditional trajectory predicting methods
such as Kalman filter [6] and social force model [7],
deep learning-based methods have shown outstanding per-
formance to model interactions between traffic agents such
as vehicles and pedestrians [8]. In deep learning, a type of
neural network termed Long Short-Term Memory (LSTM)
has been shown to successfully handle tasks with sequen-
tial inputs and outputs. Since trajectory predictions can be
viewed as such sequential to sequential tasks, many LSTM-
based methods are proposed for trajectory predictions in
interactive scenarios.

LSTM-based methods [9]–[11] utilize the pooling mecha-
nism to model social interactions. In [9], social pooling layers
are proposed to capture interactions among pedestrians. The
spatial information of pedestrians is preserved through grid-
based pooling. [10] extends the Social-LSTM [9] by applying
convolutional layers to replace fully connected layers, which
is proposed as a remedy to address generalization problems.
[12]–[14] adopt the attention mechanism to deal with inter-
active information. [12] proposes a state refinement module
for the LSTM network. Trajectories are predicted by utilizing
the current intention of surrounding agents. In [14], a Social
Relationship Attention LSTM (SRA-LSTM) is proposed to
predict future trajectories. Social relationship attention to
aggregate movement information from neighbor agents is uti-
lized to model the interactions in SRA-LSTM. These LSTM-
based methods focus on designing special mechanisms to
model interactions. The mainly used networks are LSTM.
Furthermore, more types of networks such as Generative
Adversarial Networks (GAN), Graph-based networks, and
Temporal Convolutional Networks (TCN) are utilized to
improve the modeling and predicting performance.

In [15], tools from sequence prediction and generative
adversarial networks are combined to predict socially plau-
sible trajectories. [16] improves the Social-GAN model by
introducing a flexible graph attention network. [17] ex-
tracts interactive information into social behavior graphs.
The graph convolutional neural network is then applied to
propagate social interaction information in such graphs. [18]
proposes a graph-based information-sharing network (GIS-
Net) to improve the accuracy of vehicle trajectory prediction
compared to baselines in experiments. [19] proposes a graph-
based temporal convolutional network. Both the accuracy and

2022 IEEE Intelligent Vehicles Symposium (IV)
June 5-9, 2022. Aachen, Germany

978-1-6654-8821-1/22/$31.00 ©2022 IEEE 51

20
22

 IE
EE

 In
te

lli
ge

nt
 V

eh
ic

le
s S

ym
po

si
um

 (I
V

) |
 9

78
-1

-6
65

4-
88

21
-1

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IV
51

97
1.

20
22

.9
82

70
70

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 07,2025 at 13:22:29 UTC from IEEE Xplore.  Restrictions apply. 



efficiency of trajectory predictions are improved compared to
baselines in experiments. [20] proposes a hierarchical Graph
Neural Network (GNN) framework combined with LSTM to
model interactions of heterogeneous traffic participants and
predict their trajectories. Similarly, in [21], by using GNN,
interactions and trajectories are firstly modeled as spatial-
temporal graphs. Then a GNN-based multitask learning
framework is proposed to accurately predict trajectories of
vehicles and pedestrians.

However, these previous studies only focus on the design
of network structures to model interactions, and each model
is used individually to predict trajectories. The combination
of different models is ignored. Using an individual model to
make predictions may lead to low predicting accuracy and
the model can be sensitive to training data [22].

As discussed in [23] and [24], the individual model can be
weak to make predictions. In comparison, ensemble learning
methods that assemble individual models to make predictions
can improve the predictive performance of an individual
model [25]. For example, [22] proposes an ensemble learning
model which improves the predicting accuracy for driver
lane change intention inference. In [22], a data augmentation
scheme is firstly designed to increase the data volume and
generate multiple training sets. Then, based on the Bootstrap
aggregating method, different RNN models are assembled to
inference the lane change intention. Results show that the
accuracy and robustness of the RNN models for intention
inference are improved by applying the ensemble method. To
the best of our knowledge, there are few ensemble learning
studies focusing on vehicle trajectory prediction. Therefore,
this paper proposes a novel ensemble learning framework for
vehicle trajectory prediction in interactive scenarios, and we
term it as Interactive Ensemble Trajectory Predictor (IETP).
The main contributions of this paper are as follows:

• A novel ensemble learning framework is proposed for
vehicle trajectory prediction in interactive scenarios.
The framework assembles interaction-aware trajectory
predictors as base learners to build an ensemble learner,
improving the predicting performance of base learners.

• Two ensemble learning strategies are proposed for tra-
jectory predictors to handle the maneuvers classification
and trajectory prediction tasks, respectively.

• Three experiments using a different number of the
data are conducted to evaluate the proposed framework.
Moreover, a comparative study in the time-cost of the
proposed framework is also presented.

The remainder of this paper is organized as follows. Sec-
tion II introduces the construction of IETP. Section III shows
experimental results and analysis. Lastly, the conclusion of
this paper is presented in Section IV.

II. INTERACTIVE ENSEMBLE TRAJECTORY PREDICTOR

This section will introduce the proposed IETP, which
is displayed in Fig. 1. IETP assembles interaction-aware
models which consider interactions between vehicles as base
learners to build an ensemble learner, predicting trajectories
in interactive scenarios. Firstly, inputs of IETP are fed into

each base learner. Each base learner then predicts trajectories
based on handling interactions between vehicles. Finally,
IETP obtains outputs by applying ensemble strategies on
predictions from all base learners. IETP aims to provide a
general ensemble learning approach for trajectory prediction
in interactive scenarios. Convolutional Social Pooling models
proposed in [10] are adopted as base learners in this study.
It can be regarded as an example of IETP instead of a fixed
approach.

A. Problem Formulation

According to [10], the trajectory prediction is formulated
as estimating the probability distribution of future positions
of the predicted vehicle in this study. Inputs to IETP are his-
torical trajectories of the predicted vehicle and surrounding
vehicles. The historical trajectories can be described as:

X = [h(t−th), ...,h(t−1),h(t)], (1)

where h(t) = [x
(t)
0 , y

(t)
0 , x

(t)
1 , y

(t)
1 , ..., x

(t)
i , y

(t)
i , ..., x

(t)
n , y

(t)
n ]

are x and y coordinates at time t. Here, the y-axis points to
the driving direction. The x-axis points to the lateral direc-
tion. In vector h(t), x(t)

0 and y
(t)
0 are coordinates of the vehi-

cle being predicted at time t, while x
(t)
i , y(t)i (i=1,2,3,. . . ,n)

represent the coordinates of different surrounding vehicles
at time t. The output of IETP is a probability distribution
over future coordinates of the predicted vehicle. If future
coordinates are described as Y, the output distribution can
be described as:

P(Y|X) =

6∑
i=1

PG(Y|di,X)P(di|X), (2)

where G = [G(t+1), ...,G(t+tf )] are parameters of a bivari-
ate Gaussian distribution at each time step in the prediction
horizon. Detailed parameters of a bivariate can be described
as:

G(t) = [m(t)
x ,m(t)

y , s(t)x , s(t)y , r(t)], (3)

where m
(t)
x and m

(t)
y are mathematical expectations of the

predicted future locations in the lateral and longitudinal
direction at time t. While s

(t)
x and s

(t)
y are variances of X

and Y, and r(t) is the coefficient of association. di (i=1, 2,
3, 4, 5, 6) represents six driving maneuvers defined in [10].
Detailed types of maneuvers are also shown in Fig. 1.

B. Ensemble Learning Approaches for IETP

Since the diversity of base learners is critical to the
performance of the ensemble learner [24], this study applies
the Bootstrap aggregating (bagging) method to obtain diverse
base learners. Firstly, the NGSIM dataset [26] is processed
as shown in Fig. 2. The processed dataset consists of
trajectories information. Secondly, several sub-training sets
are obtained by random sampling with replacement based on
the processed dataset. In detail, every sub-training set has the
same number of samples as the whole training set. This type
of sampling is named Bootstrap sampling [27]. Then, base
learners are trained on these sub-training sets, respectively. It
should be noted that the trained weights of networks in these
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Fig. 1: IETP assembles n interaction-aware models as base learners. To demonstrate the performance of IETP, this study adopts
Convolutional Social Pooling models as base learners in experiments. First, IETP assembles n base learners by Bootstrap aggregating.

Then, two specific ensemble strategies including plurality voting and simple averaging are used to build the ensemble learner.

base learners are different due to diverse training samples.
To distinguish different base learners, all base learners are
numbered.

After obtaining diverse base learners, as shown in Fig.
1, inputs described as (1) are fed into each base learner.
Then, each base learner outputs prediction as (2). Finally,
IETP makes predictions by assembling predictions from
base learners through ensemble strategies including plurality
voting and simple averaging.

Plurality voting is a commonly used ensemble strategy in
classification task [23]. If labels in a classification task are
defined as:

C = {c1, c2, ..., cj , ..., cT}, (4)

the subscript j (j = 1, 2, 3, . . . , T) represents the class of
label, while T is the total number of labels. Each base learner

will predict from set C. Thus, the prediction of each base
learner on a sample x, can be expressed as:

Bi(x) = {b1i (x),b2i (x), ...,b
j
i (x), ...,b

T
i (x)}. (5)

In (5),

b
j
i (x) =

{
1,predicted
0, otherwise

(6)

is the prediction made by the base learner bi on label cj .
Moreover, on every sample x, only a label is predicted. Thus,
the prediction made by each base learner can be seen as
a one-hot vector. If n base learners are used to build an
ensemble learner, the predicted result of the ensemble learner
can be described as:

cE(x) = cj

j = argmax
j

n∑
i=1

b
j
i (x)

, (7)
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Fig. 2: Data-processing in experiments.

where cE(x) is the prediction on sample x made by the
ensemble learner. The result is the most voted label predicted
by n base learners. If more than one labels get the most votes,
the result will be obtained from them randomly.

In IETP, each base learner makes trajectory prediction in
terms of six driving maneuvers. Plurality voting method is
applied to obtain ensemble driving maneuvers. It should be
noted that, original predictions made by base learners are
probability format, which can be expressed as:

[p1, p2, p3, p4, p5, p6]
6∑

i=1

pi = 1
, (8)

where pi (i = 1, 2, 3, 4, 5, 6) is the probability value
corresponding to a class of driving maneuver. Firstly, each
original prediction is encoded into a one-hot vector as
described in (5). Then, the plurality voting method is applied
to these one-hot vectors to obtain ensemble learning results.
Finally, the predicted one-hot vector is decoded back into the
probability format as (8).

Simple averaging is a widely used ensemble strategy when
dealing with regression tasks [23]. Results from ensemble
learners are obtained by averaging predicted values of all
base learners. In this study, outputs of our proposed IETP are
probability distributions as described in Section II-A. Since
the probability is assumed with a bi-variate Gaussian distri-
bution, specific outputs can be described by five parameters
of Gaussian distribution in (3). Therefore, detailed outputs
of IETP are averaged values of these parameters.

C. Loss Fuction

According to [10], in the training process, the negative
log-likelihood can be described as:

− log (PG (Y|dtrue,X) P (dtrue|X)) . (9)

Equation (9) is minimized overall training samples. In (9),
dtrue provided by each training instance, is the driving
maneuver class that is actually performed.

TABLE I: KEY PARAMETERS OF EACH BASE LEARNER IN
IETP

Order Layers Hidden states Size Depth

1 LSTM encoder 64 - -
2 Social tensor - 13x3 -
3 Convolutional layer - 3x3 64
4 Convolutional layer - 3x1 16
5 Max pooling layer - 2x1 -
6 LSTM decoder 128 - -

D. Implementation Details

In this study, models observe historical trajectories for
three seconds and predict trajectories for next five seconds.
Moreover, each base learner in IETP is trained using the
Adam [28] optimizer with a learning rate of 0.001. According
to [10], the key parameters of each base learner is shown in
Table I. The leaky-ReLU activation with α equals 0.1 is used
for all layers. The model is implemented using PyTorch1.

III. EXPERIMENTS

This section presents results and statistical analysis of
experiments based on the NGSIM dataset. Three experiments
using a different number of the data are conducted to evaluate
IETP. In each experiment, 20 sub-training sets are obtained
by the Bootstrap sampling. Then, these sub-training sets
are used to train 20 base learners, respectively. Finally, 20
ensemble learners are built by assembling different base
learners. Detailed experiments are introduced in the follow-
ing.

The first experiment is to evaluate the predicting accuracy
of IETP. The training and test sets are split from the
whole processed NGSIM datasets. The second experiment
compares the performance of IETP and the base learners,
where training and test sets are split from the “US-101-
0750-0805” segment. The third experiment is to evaluate the
data efficiency of IETP comparing to several baselines. Each
base learner in IETP is trained with 50% of the training data
compared to the first experiment. Then, IETP is tested on
the same test set in the first experiment.

A. Dataset and Data-processing

The publicly available dataset NGSIM including US-101
and I-80, is used in this study. The dataset consists of real
freeway traffic and traffic contexts, which can present inter-
active scenarios in freeways. In each experiment, features
including time frames, coordinates of vehicles are firstly
extracted. Then, the dataset is split into a training set and
a test set. The test set has a fourth of samples from the
dataset. Finally, as described in Section II, 20 sub-training
sets are obtained by the Bootstrap sampling based on the
whole training set.

B. Evaluating Metrics and Baseline Models

According to [10], the root of mean squared error (RMSE)
and negative log-likelihood (NLL) are used to evaluate

1https://pytorch.org
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models in this study. In detail, RMSE is computed by

RMSE =

√√√√1

k

k∑
i=1

(Yi −Yi,true)
2 (10)

and NLL is computed by

NLL = − log

(∑
i

PG (Y|di,X) P (di|X)

)
. (11)

It should be noted that, in (10), the predicted trajectory Yi

is the one under the maneuver with the most probability
when using multi-modal outputs. And Yi,true is the ground
truth. It should also be noted that k in (10) is the number
of data samples, and di in (11) represents different driving
maneuvers.

IETP is compared with following models, which all con-
sider interactions between surrounding vehicles.

• C-VGMM + VIM: Variational Gaussian mixture models
with a Markov random field based on the vehicle
interaction module [4]. It is modified to use maneuvers
classes to allow a fair comparison as described in [10].

• GAIL-GRU: Generative adversarial imitation learning
model described in [29].

• M-LSTM: Maneuvers-LSTM model described in [30].
• S-LSTM: Social Pooling model described in [9].
• NLS-LSTM: Non-local Social Pooling model described

in [31].
• CS-LSTM: Convolutional Social Pooling without ma-

neuvers described in [10].
• CS-LSTM-M: Convolutional Social Pooling with ma-

neuvers (CS-LSTM-M) described in [10].

The system settings of IETP include two types: one uses
CS-LSTM as base learners, and the other uses CS-LSTM-M
as base learners. These two settings are termed IETP-CS and
IETP-CS-M, respectively.

C. Experimental Results and Discussion

1) Experimental Results: Table II shows the comparisons
of RMSE over the prediction horizon in the first experiment.
The RMSE values of baselines are results from [10], [31].
Results of IETP-CS-M and IETP-CS are average results
of all ensemble learners. Experimental results show that
IETP-CS has the lowest RMSE over the prediction horizon
compared to all models. Results also show that IETP-CS and
IETP-CS-M decrease the RMSE compared to the individual
CS-LSTM and CS-LSTM-M. Fig. 3 shows the detailed
comparisons of RMSE and NLL in the second experiment.
The dot markers in Fig. 3 represent the performance of
base learners (CS-LSTM-M), and the triangle markers with
lines represent the performance of ensemble learners (IETP-
CS-M). It should be explained that the nth base learner
is the individual base learner trained on the nth sampling
set. And the nth ensemble learner is built by assembling n
base learner (from the 1st to the nth). It can be found that
ensemble learners have lower RMSE and NLL most of the
time. These results show that IETP improves the predicting
accuracy of base learners. Fig. 4 shows the variance of
the RMSE and NLL from 20 base learners (CS-LSTM-
M) and 20 ensemble learners (IETP-CS-M) in the second
experiment. As shown in Fig. 4, base learners have a higher
variance of the RMSE and NLL than ensemble learners.
Moreover, the RMSE and NLL are decreased significantly

Fig. 3: Comparisons of RMSE and NLL at the 3s, 4s and 5s in the second experiment. The dot markers represent the performance of
base learners, and the triangle markers represent the performance of ensemble learners. In this experiment, the base learners are

CS-LSTM-M trained with the “US-101-0750-0805” segment of the NGSIM dataset, and the ensemble learners are IETP-CS-M. The test
set is also split from the processed “US-101-0750-0805” segment.

55

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 07,2025 at 13:22:29 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II: COMPARISON OF RMSE OVER THE PREDICTION HORIZON

Prediction C-VGMM+ GAIL-GRU M-LSTM S-LSTM NLS-LSTM CS-LSTM CS-LSTM IETP-CS IETP-CS
horizon (s) VIM -M -M (ours) (ours)

1 0.66 0.69 0.58 0.65 0.56 0.62 0.61 0.54 0.52
2 1.56 1.51 1.26 1.31 1.22 1.29 1.27 1.22 1.16
3 2.75 2.55 2.12 2.16 2.02 2.13 2.09 2.06 1.94
4 4.24 3.65 3.24 3.25 3.03 3.20 3.10 3.15 2.95
5 5.99 4.71 4.66 4.55 4.30 4.52 4.37 4.52 4.24

Fig. 4: Comparisons of variances of RMSE (left) and NLL (right)
on all base learners and all ensemble learners.

Fig. 5: Average RMSE over prediction horizon. The IETP refers
to the IETP-CS trained with 50% data of the whole NGSIM

training set.

by applying the ensemble learning approach, especially when
the prediction horizon extends further. For example, at the
4s, the variance of RMSE and NLL are decreased by 98%
and 87%. And at the 5s, RMSE and NLL are reduced by
97% and 88%, respectively. These results can also be found
intuitively in Fig. 3. As shown in Fig. 3, the performance of
base learners varies wider than the ensemble learners among
20 groups of testing. Moreover, the gap between the best
and the worst performance of base learners can be enormous.
For example, at the 5s, the gap between the highest and the
lowest RMSE of base learners is 1.56 m. In comparison, the
largest gap of ensemble learners is 0.23 m. These results
show that IETP has a more stable performance than base
learners.

Fig. 5 shows the comparison of average RMSE over

Fig. 6: The time cost to predict trajecotries on a sample: base
learner (left), the 10th ensemble learner (middle), and the 20th

ensemble learner (right).

the prediction horizon in the third experiment. From
Fig. 5, IETP-CS trained with 50% data outperforms C-
VGMM+VIM and GAIL-GRU. Besides, the average RMSE
values of S-LSTM and IETP-CS are 2.38m and 2.42m, which
are very close.

2) Comparative Study in the Time-cost: Compared to the
individual model, more models need to be loaded in IETP. As
a result, it takes more time for ensemble learners to predict
trajectories. The time cost of models to predict trajectories
on each sample is recorded in this study. Recordings show
that the relationship between the time cost and the number
of assembled base learners is almost linear. Fig. 6 shows
the time cost of models to predict trajectories on each
sample. However, we found that using more base learners to
build ensemble learners does not significantly improve the
performance. For example, from Fig. 3, the performance of
the 10th ensemble learner and the 20th ensemble learner are
close to each other. In contrast, the 10th ensemble learner
has a lower time cost.

The best-performed ensemble learner is different among
experiments. This paper may not propose a specific number
of base learners to be used. Nevertheless, even the highest
time cost, i.e., the time cost of the 20th ensemble learner in
experiments, is approximately four milliseconds. Since the
timescale for vehicles to change lanes or make a brake action
in interactive scenarios is about a few seconds [22], the time
cost of IETP is acceptable.

IV. CONCLUSIONS

In this paper, an ensemble learning-based framework
is proposed for vehicle trajectory prediction in interactive
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scenarios. The proposed framework is built by assembling
interaction-aware trajectory predictors through the Bootstrap
aggregating. Two ensemble strategies are applied to solve
the driving maneuvers classification and trajectory prediction
tasks. By adopting Convolutional Social Pooling models
as base learners, three experiments are conducted on the
NGSIM dataset to evaluate the framework.

Firstly, experimental results show that the proposed frame-
work improves the predicting accuracy compared to base
learners. Secondly, experimental results show that the perfor-
mance variance can be significantly decreased by applying
the proposed framework. Since the variance measures the
dispersion of the data, it shows that individual models
can have a more stable performance by applying the pro-
posed framework. Moreover, the proposed framework with
less training data outperforms the GAIL-GRU [29] and C-
VGMM+VIM [4] models while reaching a similar perfor-
mance of the S-LSTM [9]. It indicates that the proposed
framework is data-efficient.

In this study, specific base learners in our ensemble learn-
ing framework are Convolutional Social Pooling models.
However, the proposed ensemble learning framework pro-
vides a general ensemble learning-based approach to predict
trajectories in interactive scenarios. Since the characteristics
and number of base learners are critical to the performance
of ensemble learners, selecting different types and numbers
of models as base learners will be considered and discussed
in future works.
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